What are SparkSession Config Options

Sha2b picture Sha2b · Mar 26, 2017 · Viewed 92.5k times · Source

I am trying to use SparkSession to convert JSON data of a file to RDD with Spark Notebook. I already have the JSON file.

 val spark = SparkSession
   .builder()
   .appName("jsonReaderApp")
   .config("config.key.here", configValueHere)
   .enableHiveSupport()
   .getOrCreate()
val jread = spark.read.json("search-results1.json")

I am very new to spark and do not know what to use for config.key.here and configValueHere.

Answer

Clay picture Clay · Nov 14, 2017

SparkSession

To get all the "various Spark parameters as key-value pairs" for a SparkSession, “The entry point to programming Spark with the Dataset and DataFrame API," run the following (this is using Spark Python API, Scala would be very similar).

import pyspark
from pyspark import SparkConf
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
SparkConf().getAll()

or without importing SparkConf:

spark.sparkContext.getConf().getAll()

Depending on which API you are using, see one of the following:

  1. https://spark.apache.org/docs/latest/api/scala/org/apache/spark/sql/SparkSession.html
  2. https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.SparkSession.html
  3. https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/SparkSession.html

You can get a deeper level list of SparkSession configuration options by running the code below. Most are the same, but there are a few extra ones. I am not sure if you can change these.

spark.sparkContext._conf.getAll()  

SparkContext

To get all the "various Spark parameters as key-value pairs" for a SparkContext, the "Main entry point for Spark functionality," ... "connection to a Spark cluster," ... and "to create RDDs, accumulators and broadcast variables on that cluster,” run the following.

import pyspark
from pyspark import SparkConf, SparkContext 
spark_conf = SparkConf().setAppName("test")
spark = SparkContext(conf = spark_conf)
SparkConf().getAll()

Depending on which API you are using, see one of the following:

  1. https://spark.apache.org/docs/latest/api/scala/org/apache/spark/SparkContext.html
  2. https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.SparkContext.html
  3. https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html

Spark parameters

You should get a list of tuples that contain the "various Spark parameters as key-value pairs" similar to the following:

[(u'spark.eventLog.enabled', u'true'),
 (u'spark.yarn.appMasterEnv.PYSPARK_PYTHON', u'/<yourpath>/parcels/Anaconda-4.2.0/bin/python'),
 ...
 ...
 (u'spark.yarn.jars', u'local:/<yourpath>/lib/spark2/jars/*')]

Depending on which API you are using, see one of the following:

  1. https://spark.apache.org/docs/latest/api/scala/org/apache/spark/SparkConf.html
  2. https://spark.apache.org/docs/latest//api/python/reference/api/pyspark.SparkConf.html
  3. https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkConf.html

For a complete list of Spark properties, see:
http://spark.apache.org/docs/latest/configuration.html#viewing-spark-properties

Setting Spark parameters

Each tuple is ("spark.some.config.option", "some-value") which you can set in your application with:

SparkSession

spark = (
    SparkSession
    .builder
    .appName("Your App Name")
    .config("spark.some.config.option1", "some-value")
    .config("spark.some.config.option2", "some-value")
    .getOrCreate())

sc = spark.sparkContext

SparkContext

spark_conf = (
    SparkConf()
    .setAppName("Your App Name")
    .set("spark.some.config.option1", "some-value")
    .set("spark.some.config.option2", "some-value"))

sc = SparkContext(conf = spark_conf)

spark-defaults

You can also set the Spark parameters in a spark-defaults.conf file:

spark.some.config.option1 some-value
spark.some.config.option2 "some-value"

then run your Spark application with spark-submit (pyspark):

spark-submit \
--properties-file path/to/your/spark-defaults.conf \
--name "Your App Name" \
--py-files path/to/your/supporting/pyspark_files.zip \
--class Main path/to/your/pyspark_main.py