I have a pyspark dataframe consisting of one column, called json
, where each row is a unicode string of json. I'd like to parse each row and return a new dataframe where each row is the parsed json.
# Sample Data Frame
jstr1 = u'{"header":{"id":12345,"foo":"bar"},"body":{"id":111000,"name":"foobar","sub_json":{"id":54321,"sub_sub_json":{"col1":20,"col2":"somethong"}}}}'
jstr2 = u'{"header":{"id":12346,"foo":"baz"},"body":{"id":111002,"name":"barfoo","sub_json":{"id":23456,"sub_sub_json":{"col1":30,"col2":"something else"}}}}'
jstr3 = u'{"header":{"id":43256,"foo":"foobaz"},"body":{"id":20192,"name":"bazbar","sub_json":{"id":39283,"sub_sub_json":{"col1":50,"col2":"another thing"}}}}'
df = sql_context.createDataFrame([Row(json=jstr1),Row(json=jstr2),Row(json=jstr3)])
I've tried mapping over each row with json.loads
:
(df
.select('json')
.rdd
.map(lambda x: json.loads(x))
.toDF()
).show()
But this returns a TypeError: expected string or buffer
I suspect that part of the problem is that when converting from a dataframe
to an rdd
, the schema information is lost, so I've also tried manually entering in the schema info:
schema = StructType([StructField('json', StringType(), True)])
rdd = (df
.select('json')
.rdd
.map(lambda x: json.loads(x))
)
new_df = sql_context.createDataFrame(rdd, schema)
new_df.show()
But I get the same TypeError
.
Looking at this answer, it looks like flattening out the rows with flatMap
might be useful here, but I'm not having success with that either:
schema = StructType([StructField('json', StringType(), True)])
rdd = (df
.select('json')
.rdd
.flatMap(lambda x: x)
.flatMap(lambda x: json.loads(x))
.map(lambda x: x.get('body'))
)
new_df = sql_context.createDataFrame(rdd, schema)
new_df.show()
I get this error: AttributeError: 'unicode' object has no attribute 'get'
.
For Spark 2.1+, you can use from_json
which allows the preservation of the other non-json columns within the dataframe as follows:
from pyspark.sql.functions import from_json, col
json_schema = spark.read.json(df.rdd.map(lambda row: row.json)).schema
df.withColumn('json', from_json(col('json'), json_schema))
You let Spark derive the schema of the json string column. Then the df.json
column is no longer a StringType, but the correctly decoded json structure, i.e., nested StrucType
and all the other columns of df
are preserved as-is.
You can access the json content as follows:
df.select(col('json.header').alias('header'))