I'm trying to create an algorithm that returns the closest pair from randomly generated points. I have finished the algorithm, however the divide and conquer method of the algorithm is not much faster than the brute-force method. What can I do to optimize the code so that it returns at (n log n) time?
import java.util.*;
import java.lang.*;
import static java.lang.Math.min;
import static java.lang.StrictMath.abs;
public class closestPair {
private static Random randomGenerator; // for random numbers
public static class Point implements Comparable<Point> {
public long x, y;
// Constructor
public Point(long x, long y) {
this.x = x;
this.y = y;
}
public int compareTo(Point p) {
// compare this and p and there are three results: >0, ==0, or <0
if (this.x == p.x) {
if (this.y == p.y)
return 0;
else
return (this.y > p.y)? 1 : -1;
}
else
return (this.x > p.x)? 1 : -1;
}
public String toString() {
return " ("+Long.toString(this.x)+","+Long.toString(this.y)+")";
}
public double distance(Point p) {
long dx = (this.x - p.x);
long dy = (this.y - p.y);
return Math.sqrt(dx*dx + dy*dy);
}
}
public static Point[] plane;
public static Point[] T;
public static Point[] Y;
public static int N; // number of points in the plane
public static void main(String[] args) {
// Read in the Size of a maze
Scanner scan = new Scanner(System.in);
try {
System.out.println("How many points in your plane? ");
N = scan.nextInt();
}
catch(Exception ex){
ex.printStackTrace();
}
scan.close();
// Create plane of N points.
plane = new Point[N];
Y = new Point[N];
T = new Point[N];
randomGenerator = new Random();
for (int i = 0; i < N; ++i) {
long x = randomGenerator.nextInt(N<<6);
long y = randomGenerator.nextInt(N<<6);
plane[i] = new Point(x, y);
}
Arrays.sort(plane); // sort points according to compareTo.
for (int i = 1; i < N; ++i) // make all x's distinct.
if (plane[i-1].x >= plane[i].x) plane[i].x = plane[i-1].x + 1;
//for (int i = 1; i < N; i++)
// if (plane[i-1].y >= plane[i].y) plane[i].y = plane[i-1].y + 1;
//
//
System.out.println(N + " points are randomly created.");
System.out.println("The first two points are"+plane[0]+" and"+plane[1]);
System.out.println("The distance of the first two points is "+plane[0].distance(plane[1]));
long start = System.currentTimeMillis();
// Compute the minimal distance of any pair of points by exhaustive search.
double min1 = minDisSimple();
long end = System.currentTimeMillis();
System.out.println("The distance of the two closest points by minDisSimple is "+min1);
System.out.println("The running time for minDisSimple is "+(end-start)+" mms");
// Compute the minimal distance of any pair of points by divide-and-conquer
long start1 = System.currentTimeMillis();
double min2 = minDisDivideConquer(0, N-1);
long end1 = System.currentTimeMillis();
System.out.println("The distance of the two closest points by misDisDivideConquer is "+min2);
System.out.println("The running time for misDisDivideConquer is "+(end1-start1)+" mms");
}
static double minDisSimple() {
// A straightforward method for computing the distance
// of the two closest points in plane[0..N-1].
// to be completed
double midDis = Double.POSITIVE_INFINITY;
for (int i = 0; i < N - 1; i++) {
for (int j = i + 1; j < N; j++) {
if (plane[i].distance(plane[j]) < midDis){
midDis = plane[i].distance(plane[j]);
}
}
}
return midDis;
}
static void exchange(int i, int j) {
Point x = plane[i];
plane[i] = plane[j];
plane[j] = x;
}
static double minDisDivideConquer(int low, int high) {
// Initialize necessary values
double minIntermediate;
double minmin;
double minDis;
if (high == low+1) { // two points
if (plane[low].y > plane[high].y) exchange(low, high);
return plane[low].distance(plane[high]);
}
else if (high == low+2) { // three points
// sort these points by y-coordinate
if (plane[low].y > plane[high].y) exchange(low, high);
if (plane[low].y > plane[low+1].y) exchange(low, low+1);
else if (plane[low+1].y > plane[high].y) exchange(low+1, high);
// compute pairwise distances
double d1 = plane[low].distance(plane[high]);
double d2 = plane[low].distance(plane[low+1]);
double d3 = plane[low+1].distance(plane[high]);
return ((d1 < d2)? ((d1 < d3)? d1 : d3) : (d2 < d3)? d2 : d3); // return min(d1, d2, d3)
} else { // 4 or more points: Divide and conquer
int mid = (high + low)/2;
double lowerPartMin = minDisDivideConquer(low,mid);
double upperPartMin = minDisDivideConquer(mid+1,high);
minIntermediate = min(lowerPartMin, upperPartMin);
int k = 0;
double x0 = plane[mid].x;
for(int i = 1; i < N; i++){
if(abs(plane[i].x-x0) <= minIntermediate){
k++;
T[k] = plane[i];
}
}
minmin = 2 * minIntermediate;
for (int i = 1; i < k-1; i++){
for(int j = i + 1; j < min(i+7,k);j++){
double distance0 = abs(T[i].distance(T[j]));
if(distance0 < minmin){
minmin = distance0;
}
}
}
minDis = min(minmin, minIntermediate);
}
return minDis;
}
}
Use the following method with the change for minDisSimple. You can get more performance.
static double minDisSimple() {
// A straightforward method for computing the distance
// of the two closest points in plane[0..N-1].
// to be completed
double midDis = Double.POSITIVE_INFINITY;
double temp;
for (int i = 0; i < N - 1; i++) {
for (int j = i + 1; j < N; j++) {
temp = plane[i].distance(plane[j]);
if (temp < midDis) {
midDis = temp;
}
}
}
return midDis;
}
Performance wise for small amount of points simple method is good but larger amount of points Divide and Conquer is good. Try number of points with 10, 100, 1000, 10000, 100000, 1000000.