I'm trying to run the spark shell on my Hadoop cluster via Yarn. I use
My Hadoop cluster already works. In order to use Spark, I built Spark as described here :
mvn -Pyarn -Phadoop-2.4 -Dhadoop.version=2.4.1 -DskipTests clean package
The compilation works fine, and I can run spark-shell
without troubles. However, running it on yarn :
spark-shell --master yarn-client
gets me the following error :
14/07/07 11:30:32 INFO cluster.YarnClientSchedulerBackend: Application report from ASM:
appMasterRpcPort: -1
appStartTime: 1404725422955
yarnAppState: ACCEPTED
14/07/07 11:30:33 INFO cluster.YarnClientSchedulerBackend: Application report from ASM:
appMasterRpcPort: -1
appStartTime: 1404725422955
yarnAppState: FAILED
org.apache.spark.SparkException: Yarn application already ended,might be killed or not able to launch application master
.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApp(YarnClientSchedulerBackend.scala:105
)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:82)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:136)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:318)
at org.apache.spark.repl.SparkILoop.createSparkContext(SparkILoop.scala:957)
at $iwC$$iwC.<init>(<console>:8)
at $iwC.<init>(<console>:14)
at <init>(<console>:16)
at .<init>(<console>:20)
at .<clinit>(<console>)
at .<init>(<console>:7)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:788)
at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1056)
at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:614)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:645)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:609)
at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:796)
at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:841)
at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:753)
at org.apache.spark.repl.SparkILoopInit$$anonfun$initializeSpark$1.apply(SparkILoopInit.scala:121)
at org.apache.spark.repl.SparkILoopInit$$anonfun$initializeSpark$1.apply(SparkILoopInit.scala:120)
at org.apache.spark.repl.SparkIMain.beQuietDuring(SparkIMain.scala:263)
at org.apache.spark.repl.SparkILoopInit$class.initializeSpark(SparkILoopInit.scala:120)
at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:56)
at org.apache.spark.repl.SparkILoop$$anonfun$process$1$$anonfun$apply$mcZ$sp$5.apply$mcV$sp(SparkILoop.scala:913)
at org.apache.spark.repl.SparkILoopInit$class.runThunks(SparkILoopInit.scala:142)
at org.apache.spark.repl.SparkILoop.runThunks(SparkILoop.scala:56)
at org.apache.spark.repl.SparkILoopInit$class.postInitialization(SparkILoopInit.scala:104)
at org.apache.spark.repl.SparkILoop.postInitialization(SparkILoop.scala:56)
at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply$mcZ$sp(SparkILoop.scala:930)
at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply(SparkILoop.scala:884)
at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply(SparkILoop.scala:884)
at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:884)
at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:982)
at org.apache.spark.repl.Main$.main(Main.scala:31)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:292)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:55)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Spark manages to communicate with my cluster, but it doesn't work out.
Another interesting thing is that I can access my cluster using pyspark --master yarn
. However, I get the following warning
14/07/07 14:10:11 WARN cluster.YarnClientClusterScheduler: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient memory
and an infinite computation time when doing something as simple as
sc.wholeTextFiles('hdfs://vm7x64.fr/').collect()
What may be causing this problem ?
Please check does your Hadoop cluster is running correctly. On the master node next YARN process must be running:
$ jps
24970 ResourceManager
On slave nodes/executors:
$ jps
14389 NodeManager
Also make sure that you created a reference (or copied those files) to Hadoop configuration in Spark config directory :
$ ll /spark/conf/ | grep site
lrwxrwxrwx 1 hadoop hadoop 33 Jun 8 18:13 core-site.xml -> /hadoop/etc/hadoop/core-site.xml
lrwxrwxrwx 1 hadoop hadoop 33 Jun 8 18:13 hdfs-site.xml -> /hadoop/etc/hadoop/hdfs-site.xml
You also can check ResourceManager Web UI on port 8088 - http://master:8088/cluster/nodes. There must be a list of available nodes and resources.
You must take a look at your log files using next command (application ID you can find in Web UI):
$ yarn logs -applicationId <yourApplicationId>
Or you can look directly to entire log files on Master/ResourceManager host:
$ ll /hadoop/logs/ | grep resourcemanager
-rw-rw-r-- 1 hadoop hadoop 368414 Jun 12 18:12 yarn-hadoop-resourcemanager-master.log
-rw-rw-r-- 1 hadoop hadoop 2632 Jun 12 17:52 yarn-hadoop-resourcemanager-master.out
And on Slave/NodeManager hosts:
$ ll /hadoop/logs/ | grep nodemanager
-rw-rw-r-- 1 hadoop hadoop 284134 Jun 12 18:12 yarn-hadoop-nodemanager-slave.log
-rw-rw-r-- 1 hadoop hadoop 702 Jun 9 14:47 yarn-hadoop-nodemanager-slave.out
Also check if all environment variables are correct:
HADOOP_CONF_LIB_NATIVE_DIR=/hadoop/lib/native
HADOOP_MAPRED_HOME=/hadoop
HADOOP_COMMON_HOME=/hadoop
HADOOP_HDFS_HOME=/hadoop
YARN_HOME=/hadoop
HADOOP_INSTALL=/hadoop
HADOOP_CONF_DIR=/hadoop/etc/hadoop
YARN_CONF_DIR=/hadoop/etc/hadoop
SPARK_HOME=/spark