How to convert an array extracted from a json string field to a bigquery Repeated field?

FZF picture FZF · Jul 26, 2017 · Viewed 11.5k times · Source

We have loaded json blobs in a String field in a Bigquery table. I need to create a view (using standard sql)over the table that would extract the array field as a bigquery array/repeated field of "RECORD" type (which itself includes a repeated field).

Here is a sample record (json_blob):

{"order_id":"123456","customer_id":"2abcd", "items":[{"line":"1","ref_ids":["66b56e60","9e7ca2b7"],"sku":"1111","amount":40 },{"line":"2","ref_ids":["7777h0","8888j0"],"sku":"2222","amount":10 }]}

I am hoping to end up with a view that has the following layout:

[
{
    "name": "order_id",
    "type": "STRING",
    "mode": "NULLABLE"
},
{
    "mode": "NULLABLE",
    "name": "customer_id",
    "type": "STRING"
},
{
    "mode": "REPEATED",
    "name": "items",
    "type": "RECORD",
    "fields": [
        {
            "mode": "NULLABLE",
            "name": "line",
            "type": "STRING"
        },
        {
            "mode": "REPEATED",
            "name": "ref_ids",
            "type": "STRING"
        },
        {
            "mode": "NULLABLE",
            "name": "sku",
            "type": "STRING"
        },
        {
            "mode": "NULLABLE",
            "name": "amount",
            "type": "INTEGER"
        }
    ]
}
]

Json_extract(json_blob, '$.items') extracts the items parts, but how do I convert that to a bigquery array of type "RECORD" which then can be processed like normal bigquery array/repeated of STRUCT?

Appreciate any help.

Answer

Elliott Brossard picture Elliott Brossard · Jul 26, 2017

There is no way to do this using SQL functions in BigQuery at the time of this writing unless you can impose a hard limit on the number of values in the JSON array; see the relevant issue tracker item. Your options are:

  • Process the data differently (e.g. using Cloud Dataflow or another tool) so that you can load it from newline-delimited JSON into BigQuery.
  • Use a JavaScript UDF that takes the input JSON and returns the desired type; this is fairly straightforward but generally uses more CPU (and hence may require a higher billing tier).
  • Use SQL functions with the understanding that the solution breaks down if there are too many elements.

Here is the approach using a JavaScript UDF:

#standardSQL
CREATE TEMP FUNCTION JsonToItems(input STRING)
RETURNS STRUCT<order_id INT64, customer_id STRING, items ARRAY<STRUCT<line STRING, ref_ids ARRAY<STRING>, sku STRING, amount INT64>>>
LANGUAGE js AS """
return JSON.parse(input);
""";

WITH Input AS (
  SELECT '{"order_id":"123456","customer_id":"2abcd", "items":[{"line":"1","ref_ids":["66b56e60","9e7ca2b7"],"sku":"1111","amount":40 },{"line":"2","ref_ids":["7777h0","8888j0"],"sku":"2222","amount":10 }]}' AS json
)
SELECT
  JsonToItems(json).*
FROM Input;

If you do want to try the SQL-based approach without JavaScript, here's somewhat of a hack until the feature request above is resolved, where the number of array elements must be no more than 10:

#standardSQL
CREATE TEMP FUNCTION JsonExtractRefIds(json STRING) AS (
  (SELECT ARRAY_AGG(v IGNORE NULLS)
   FROM UNNEST([
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[0]'),
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[1]'),
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[2]'),
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[3]'),
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[4]'),
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[5]'),
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[6]'),
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[7]'),
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[8]'),
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[9]')]) AS v)
);

CREATE TEMP FUNCTION JsonToItem(json STRING)
RETURNS STRUCT<line STRING, ref_ids ARRAY<STRING>, sku STRING, amount INT64>
AS (
  IF(json IS NULL, NULL,
    STRUCT(
      JSON_EXTRACT_SCALAR(json, '$.line'),
      JsonExtractRefIds(json),
      JSON_EXTRACT_SCALAR(json, '$.sku'),
      CAST(JSON_EXTRACT_SCALAR(json, '$.amount') AS INT64)
    )
  )
);

CREATE TEMP FUNCTION JsonToItems(json STRING) AS (
  (SELECT AS STRUCT
    CAST(JSON_EXTRACT_SCALAR(json, '$.order_id') AS INT64) AS order_id,
    JSON_EXTRACT_SCALAR(json, '$.customer_id') AS customer_id,
    (SELECT ARRAY_AGG(v IGNORE NULLS)
     FROM UNNEST([
       JsonToItem(JSON_EXTRACT(json, '$.items[0]')),
       JsonToItem(JSON_EXTRACT(json, '$.items[1]')),
       JsonToItem(JSON_EXTRACT(json, '$.items[2]')),
       JsonToItem(JSON_EXTRACT(json, '$.items[3]')),
       JsonToItem(JSON_EXTRACT(json, '$.items[4]')),
       JsonToItem(JSON_EXTRACT(json, '$.items[5]')),
       JsonToItem(JSON_EXTRACT(json, '$.items[6]')),
       JsonToItem(JSON_EXTRACT(json, '$.items[7]')),
       JsonToItem(JSON_EXTRACT(json, '$.items[8]')),
       JsonToItem(JSON_EXTRACT(json, '$.items[9]'))]) AS v) AS items
  )
);

WITH Input AS (
  SELECT '{"order_id":"123456","customer_id":"2abcd", "items":[{"line":"1","ref_ids":["66b56e60","9e7ca2b7"],"sku":"1111","amount":40 },{"line":"2","ref_ids":["7777h0","8888j0"],"sku":"2222","amount":10 }]}' AS json
)
SELECT
  JsonToItems(json).*
FROM Input;