Initializing SD card in SPI issues

Sembazuru picture Sembazuru · Mar 2, 2010 · Viewed 25.6k times · Source

I've had a look at Stack Overflow question Initialization of a microSD card using an SPI interface and didn't see any answers that matched my issue (that is, things I haven't already tried).

I have a similar issue where I'm trying to access a SD card through a microcontroller's SPI interface (specifically an HC908). I've tried following the flow charts in the Physical Layer Simplified Specification v2.00 and it seems to initialize correctly on Transcend 1 GB & 2 GB and an AE&C 1 GB card. But I'm having problems on three other random cards from my stash of old cards that I've used on my camera.

My code is all HC908 assembler. I scoped out the SPI clock line and during initialization it's running about 350 kHz (the only speed multiplier that the HC908 supplies at my low MCU clock speed that falls within the 100 - 400 kHz window).

Here are the results of the three cards that aren't completing my initialization routine (all done consecutively without changing any code or timing parameters):

Canon 16Meg card (labeled as SD):
Set card select high
Send 80 SPI clock cycles (done by writing 0xFF 10 times)
Set card select low
Send CMD0 [0x400000000095] and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x01 (indicates idle)
Send CMD8 [0x48000001AA87] and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x05 (idle and illegal command)
Because illegal command set local flag to indicate v1 or MMC card
Send CMD58 [0x7A00000000FD] and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x05 (idle and illegal command)
because illegal command branch to error routine
Send CMD13 [0x4D000000000D] (show status buffer) and Loop up to 8 times waiting for high bit on response to go low
R1= 0x05 (idle and illegal command)

Is the illegal command flag stuck? Should I be doing something after CMD8 to clear that flag?

SanDisk UltraII 256Meg
Set card select high
Send 80 SPI clock cycles (done by writing 0xFF 10 times)
Set card select low
Send CMD0 [0x400000000095] and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x01 (idle)
Send CMD8 [0x48000001AA87] and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x05 (idle and illegal command)
Because illegal command set local flag to indicate v1 or MMC card
Send CMD58 [0x7A00000000FD] and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x01 (idle)
Send 0xFF 4 times to read OCR
OCR = 0xFFFFFFFF
Send CMD55 [0x770000000065] (1st part of ACMD41) and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x01 (idle)
Send CMD41 [0x6900000000E5] (2nd part of ACMD41) and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x05 (idle and illegal command)
Because illegal command, assume card is MMC
Send CMD1 [0x4100000000F9] (for MMC) and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x05 (idle and illegal command)
Repeat the CMD1 50 times (my arbitrary number to wait until idle clears)
Every R1 response is 0x05 (idle and illegal command)

Why is OCR all F? Doesn't seem proper at all. Also, why does ACMD41 and CMD1 respond illegal command? Is CMD1 failing because the card is waiting for a valid ACMD after the CMD55 even with the illegal command response?

SanDisk ExtremeIII 2G:
Set card select high
Send 80 SPI clock cycles (done by writing 0xFF 10 times)
Set card select low
Send CMD0 [0x400000000095] and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x01 (idle)
Send CMD8 [0x40000001AA87] and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x7F (??? My loop shows the responses for each iteration and I got 0xFF 0xFF 0xC1 0x7F... is the card getting out of sync?)
Send CMD58 [0x7A00000000FD] and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x01 (idle and back in sync)
Send 0xFF 4 times to read OCR
OCR = 0x00FF80
Send CMD55 [0x770000000065] (1st part of ACMD41) and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x5F (??? loop responses are 0xFF 0xFF 0xF0 0x5F... again out of sync?)
Send CMD41 [0x6900000000E5] (2nd part of ACMD41) and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x05 (idle and illegal command, but back in sync???)
Because illegal command, assume card is MMC
Send CMD1 [0x4100000000F9] (for MMC) and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x7F (??? loop responses are 0xFF 0xFF 0xC1 0x7F... again out of sync?)
Repeat CMD1 and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x01 (idle)
Repeat CMD1 and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x7F (??? loop responses are 0xFF 0xFF 0xC1 0x7F... again out of sync?)
Repeat CMD1 and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x00 (out of idle)
Send CMD9 [0x4900000000AF] (get CSD) and Loop up to 8 times waiting for high bit on response to go low
R1 = 0x3F (??? loop responses are 0xFF 0xFF 0xC1 0x3F... again out of sync?)
Code craps out because Illegal command bit is high.

What on Earth is wrong with that card?

Sometimes it is in sync, other times not. (The above pattern is repeatable.) I've scoped this one out and I'm not seeing any rogue clock cycles going through between MOSI/MISO transfers.

Answer

Sembazuru picture Sembazuru · Mar 3, 2010

OK... I found my problem. For anyone else who runs into this issue, it is important to remember to send an extra 0xFF after getting responses. This gives the card an extra eight clock cycles to prepare itself for the next command. Some cards don't seem to need it (the Transcends that I'm using for example), but others require it.

I actually put a simple loop at the beginning of my 'write command' routine that sends 0xFF until it gets 0xFF as a response just so I don't have to go to all the different places where I read responses to make sure I put an extra send 0xFF. Because as far as the SD card is (usually) concerned in SPI mode, if there are no clock cycles coming in, time stands still.

One thing that I noted and have yet to find an answer for (but so far it isn't hurting anything), after I read the 16 bytes of the CSR, there seem to be an additional 2 bytes of non-0xFF that comes out... Is that a CRC16? Odd since the CSR has a CRC built in...