I have a problem where I need to load alot of data (5+ billion rows) into a database very quickly (ideally less than an 30 min but quicker is better), and I was recently suggested to look into postgresql (I failed with mysql and was looking at hbase/cassandra). My setup is I have a cluster (currently 8 servers) that generates alot of data, and I was thinking of running databases locally on each machine in the cluster it writes quickly locally and then at the end (or throughout the data generating) data is merged together. The data is not in any order so I don't care which specific server its on (as long as its eventually there).
My questions are , is there any good tutorials or places to learn about PostgreSQL auto sharding (I found results of firms like sykpe doing auto sharding but no tutorials, I want to play with this myself)? Is what I'm trying to do possible? Because the data is not in any order I was going to use auto-incrementing ID number, will that cause a conflict if data is merged (this is not a big issue anymore)?
Update: Frank's idea below kind of eliminated the auto-incrementing conflict issue I was asking about. The question is basically now, how can I learn about auto sharding and would it support distributed uploads of data to multiple servers?
First: Do you really need to insert the generated data from your cluster straight into a relational database? You don't mind merging it at the end anyway, so why bother inserting into a database at all? In your position I'd have your cluster nodes write flat files, probably gzip'd CSV data. I'd then bulk import and merge that data using a tool like pg_bulkload.
If you do need to insert directly into a relational database: That's (part of) what PgPool-II and (especeially) PgBouncer are for. Configure PgBouncer to load-balance across different nodes and you should be pretty much sorted.
Note that PostgreSQL is a transactional database with strong data durability guarantees. That also means that if you use it in a simplistic way, doing lots of small writes can be slow. You have to consider what trade-offs you're willing to make between data durability, speed, and cost of hardware.
At one extreme, each INSERT
can be its own transaction that's synchronously committed to disk before returning success. This limits the number of transactions per second to the number of fsync()s your disk subsystem can do, which is often only in the tens or hundreds per second (without battery backup RAID controller). This is the default if you do nothing special and if you don't wrap your INSERT
s in a BEGIN
and COMMIT
.
At the other extreme, you say "I really don't care if I lose all this data" and use unlogged tables for your inserts. This basically gives the database permission to throw your data away if it can't guarantee it's OK - say, after an OS crash, database crash, power loss, etc.
The middle ground is where you will probably want to be. This involves some combination of asynchronous commit, group commits (commit_delay and commit_siblings), batching inserts into groups wrapped in explicit BEGIN
and END
, etc. Instead of INSERT batching you could do COPY
loads of a few thousand records at a time. All these things trade data durability off against speed.
For fast bulk inserts you should also consider inserting into tables without any indexes except a primary key. Maybe not even that. Create the indexes once your bulk inserts are done. This will be a hell of a lot faster.