I have a program that reads a "raw" list of in-game entities, and I intend to make an array holding an index number (int) of an indeterminate number of entities, for processing various things. I would like to avoid using too much memory or CPU for keeping such indexes...
A quick and dirty solution I use so far is to declare, in the main processing function (local focus) the array with a size of the maximum game entities, and another integer to keep track of how many have been added to the list. This isn't satisfactory, as every list holds 3000+ arrays, which isn't that much, but feels like a waste, since I'll possible use the solution for 6-7 lists for varying functions.
I haven't found any C (not C++ or C#) specific solutions to achieve this. I can use pointers, but I am a bit afraid of using them (unless it's the only possible way).
The arrays do not leave the local function scope (they are to be passed to a function, then discarded), in case that changes things.
If pointers are the only solution, how can I keep track of them to avoid leaks?
I can use pointers, but I am a bit afraid of using them.
If you need a dynamic array, you can't escape pointers. Why are you afraid though? They won't bite (as long as you're careful, that is). There's no built-in dynamic array in C, you'll just have to write one yourself. In C++, you can use the built-in std::vector
class. C# and just about every other high-level language also have some similar class that manages dynamic arrays for you.
If you do plan to write your own, here's something to get you started: most dynamic array implementations work by starting off with an array of some (small) default size, then whenever you run out of space when adding a new element, double the size of the array. As you can see in the example below, it's not very difficult at all: (I've omitted safety checks for brevity)
typedef struct {
int *array;
size_t used;
size_t size;
} Array;
void initArray(Array *a, size_t initialSize) {
a->array = malloc(initialSize * sizeof(int));
a->used = 0;
a->size = initialSize;
}
void insertArray(Array *a, int element) {
// a->used is the number of used entries, because a->array[a->used++] updates a->used only *after* the array has been accessed.
// Therefore a->used can go up to a->size
if (a->used == a->size) {
a->size *= 2;
a->array = realloc(a->array, a->size * sizeof(int));
}
a->array[a->used++] = element;
}
void freeArray(Array *a) {
free(a->array);
a->array = NULL;
a->used = a->size = 0;
}
Using it is just as simple:
Array a;
int i;
initArray(&a, 5); // initially 5 elements
for (i = 0; i < 100; i++)
insertArray(&a, i); // automatically resizes as necessary
printf("%d\n", a.array[9]); // print 10th element
printf("%d\n", a.used); // print number of elements
freeArray(&a);