In chapter 2, the section on bitwise operators (section 2.9), I'm having trouble understanding how one of the sample methods works.
Here's the method provided:
unsigned int getbits(unsigned int x, int p, int n) {
return (x >> (p + 1 - n)) & ~(~0 << n);
}
The idea is that, for the given number x, it will return the n bits starting at position p, counting from the right (with the farthest right bit being position 0). Given the following main()
method:
int main(void) {
int x = 0xF994, p = 4, n = 3;
int z = getbits(x, p, n);
printf("getbits(%u (%x), %d, %d) = %u (%X)\n", x, x, p, n, z, z);
return 0;
}
The output is:
getbits(63892 (f994), 4, 3) = 5 (5)
I get portions of this, but am having trouble with the "big picture," mostly because of the bits (no pun intended) that I don't understand.
The part I'm specifically having issues with is the complements piece: ~(~0 << n)
. I think I get the first part, dealing with x; it's this part (and then the mask) that I'm struggling with -- and how it all comes together to actually retrieve those bits. (Which I've verified it is doing, both with code and checking my results using calc.exe -- thank God it has a binary view!)
Any help?
Let's use 16 bits for our example. In that case, ~0
is equal to
1111111111111111
When we left-shift this n
bits (3 in your case), we get:
1111111111111000
because the 1
s at the left are discarded and 0
s are fed in at the right. Then re-complementing it gives:
0000000000000111
so it's just a clever way to get n
1-bits in the least significant part of the number.
The "x bit" you describe has shifted the given number (f994 = 1111 1001 1001 0100
) right far enough so that the least significant 3 bits are the ones you want. In this example, the input bits you're requesting are there, all other input bits are marked .
since they're not important to the final result:
ff94 ...........101.. # original number
>> p+1-n [2] .............101 # shift desired bits to right
& ~(~0 << n) [7] 0000000000000101 # clear all the other (left) bits
As you can see, you now have the relevant bits, in the rightmost bit positions.