C++ auto keyword. Why is it magic?

Anne Quinn picture Anne Quinn · Sep 28, 2011 · Viewed 124k times · Source

From all the material I used to learn C++, auto has always been a weird storage duration specifier that didn't serve any purpose. But just recently, I encountered code that used it as a type name in and of itself. Out of curiosity I tried it, and it assumes the type of whatever I happen to assign to it!

Suddenly STL iterators and, well, anything at all that uses templates is 10 fold easier to write. It feels like I'm using a 'fun' language like Python.

Where has this keyword been my whole life? Will you dash my dreams by saying it's exclusive to visual studio or not portable?

Answer

Jerry Coffin picture Jerry Coffin · Sep 28, 2011

auto was a keyword that C++ "inherited" from C that had been there nearly forever, but virtually never used because there were only two possible conditions: either it wasn't allowed, or else it was assumed by default.

The use of auto to mean a deduced type was new with C++11.

At the same time, auto x = initializer deduces the type of x from the type of initializer the same way as template type deduction works for function templates. Consider a function template like this:

template<class T>
int whatever(T t) { 
    // point A
};

At point A, a type has been assigned to T based on the value passed for the parameter to whatever. When you do auto x = initializer;, the same type deduction is used to determine the type for x from the type of initializer that's used to initialize it.

This means that most of the type deduction mechanics a compiler needs to implement auto were already present and used for templates on any compiler that even sort of attempted to implement C++98/03. As such, adding support for auto was apparently fairly easy for essentially all the compiler teams--it was added quite quickly, and there seem to have been few bugs related to it either.

When this answer was originally written (in 2011, before the ink was dry on the C++ 11 standard) auto was already quite portable. Nowadays, it's thoroughly portable among all the mainstream compilers. The only obvious reasons to avoid it would be if you need to write code that's compatible with a C compiler, or you have a specific need to target some niche compiler that you know doesn't support it (e.g., a few people still write code for MS-DOS using compilers from Borland, Watcom, etc., that haven't seen significant upgrades in decades). If you're using a reasonably current version of any of the mainstream compilers, there's no reason to avoid it at all though.