How much is too much with C++11 auto keyword?

Alan Turing picture Alan Turing · Jun 22, 2011 · Viewed 42.7k times · Source

I've been using the new auto keyword available in the C++11 standard for complicated templated types which is what I believe it was designed for. But I'm also using it for things like:

auto foo = std::make_shared<Foo>();

And more skeptically for:

auto foo = bla(); // where bla() return a shared_ptr<Foo>

I haven't seen much discussion on this topic. It seems that auto could be overused, since a type is often a form of documentation and sanity checks. Where do you draw the line in using auto and what are the recommended use cases for this new feature?

To clarify: I'm not asking for a philosophical opinion; I'm asking for the intended use of this keyword by the standard committee, possibly with comments on how that intended use is realized in practice.

Side note: This question was moved to SE.Programmers and then back to Stack Overflow. Discussion about this can be found in this meta question.

Answer

Kirill V. Lyadvinsky picture Kirill V. Lyadvinsky · Jun 22, 2011

I think that one should use the auto keyword whenever it's hard to say how to write the type at first sight, but the type of the right hand side of an expression is obvious. For example, using:

my_multi_type::nth_index<2>::type::key_type::composite_key_type::
    key_extractor_tuple::tail_type::head_type::result_type

to get the composite key type in boost::multi_index, even though you know that it is int. You can't just write int because it could be changed in the future. I would write auto in this case.

So if the auto keyword improves readability in a particular case then use it. You can write auto when it is obvious to the reader what type auto represents.

Here are some examples:

auto foo = std::make_shared<Foo>();   // obvious
auto foo = bla();                     // unclear. don't know which type `foo` has

const size_t max_size = 100;
for ( auto x = max_size; x > 0; --x ) // unclear. could lead to the errors
                                      // since max_size is unsigned

std::vector<some_class> v;
for ( auto it = v.begin(); it != v.end(); ++it )
                                      // ok, since I know that `it` has an iterator type
                                      // (don't really care which one in this context)