I am looking for an efficient way to determine the position of the least significant bit that is set in an integer, e.g. for 0x0FF0 it would be 4.
A trivial implementation is this:
unsigned GetLowestBitPos(unsigned value)
{
assert(value != 0); // handled separately
unsigned pos = 0;
while (!(value & 1))
{
value >>= 1;
++pos;
}
return pos;
}
Any ideas how to squeeze some cycles out of it?
(Note: this question is for people that enjoy such things, not for people to tell me xyzoptimization is evil.)
[edit] Thanks everyone for the ideas! I've learnt a few other things, too. Cool!
Bit Twiddling Hacks offers an excellent collection of, er, bit twiddling hacks, with performance/optimisation discussion attached. My favourite solution for your problem (from that site) is «multiply and lookup»:
unsigned int v; // find the number of trailing zeros in 32-bit v
int r; // result goes here
static const int MultiplyDeBruijnBitPosition[32] =
{
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
};
r = MultiplyDeBruijnBitPosition[((uint32_t)((v & -v) * 0x077CB531U)) >> 27];
Helpful references: