What of these two methods is in C more efficient? And how about:
pow(x,3)
vs.
x*x*x // etc?
I tested the performance difference between x*x*...
vs pow(x,i)
for small i
using this code:
#include <cstdlib>
#include <cmath>
#include <boost/date_time/posix_time/posix_time.hpp>
inline boost::posix_time::ptime now()
{
return boost::posix_time::microsec_clock::local_time();
}
#define TEST(num, expression) \
double test##num(double b, long loops) \
{ \
double x = 0.0; \
\
boost::posix_time::ptime startTime = now(); \
for (long i=0; i<loops; ++i) \
{ \
x += expression; \
x += expression; \
x += expression; \
x += expression; \
x += expression; \
x += expression; \
x += expression; \
x += expression; \
x += expression; \
x += expression; \
} \
boost::posix_time::time_duration elapsed = now() - startTime; \
\
std::cout << elapsed << " "; \
\
return x; \
}
TEST(1, b)
TEST(2, b*b)
TEST(3, b*b*b)
TEST(4, b*b*b*b)
TEST(5, b*b*b*b*b)
template <int exponent>
double testpow(double base, long loops)
{
double x = 0.0;
boost::posix_time::ptime startTime = now();
for (long i=0; i<loops; ++i)
{
x += std::pow(base, exponent);
x += std::pow(base, exponent);
x += std::pow(base, exponent);
x += std::pow(base, exponent);
x += std::pow(base, exponent);
x += std::pow(base, exponent);
x += std::pow(base, exponent);
x += std::pow(base, exponent);
x += std::pow(base, exponent);
x += std::pow(base, exponent);
}
boost::posix_time::time_duration elapsed = now() - startTime;
std::cout << elapsed << " ";
return x;
}
int main()
{
using std::cout;
long loops = 100000000l;
double x = 0.0;
cout << "1 ";
x += testpow<1>(rand(), loops);
x += test1(rand(), loops);
cout << "\n2 ";
x += testpow<2>(rand(), loops);
x += test2(rand(), loops);
cout << "\n3 ";
x += testpow<3>(rand(), loops);
x += test3(rand(), loops);
cout << "\n4 ";
x += testpow<4>(rand(), loops);
x += test4(rand(), loops);
cout << "\n5 ";
x += testpow<5>(rand(), loops);
x += test5(rand(), loops);
cout << "\n" << x << "\n";
}
Results are:
1 00:00:01.126008 00:00:01.128338
2 00:00:01.125832 00:00:01.127227
3 00:00:01.125563 00:00:01.126590
4 00:00:01.126289 00:00:01.126086
5 00:00:01.126570 00:00:01.125930
2.45829e+54
Note that I accumulate the result of every pow calculation to make sure the compiler doesn't optimize it away.
If I use the std::pow(double, double)
version, and loops = 1000000l
, I get:
1 00:00:00.011339 00:00:00.011262
2 00:00:00.011259 00:00:00.011254
3 00:00:00.975658 00:00:00.011254
4 00:00:00.976427 00:00:00.011254
5 00:00:00.973029 00:00:00.011254
2.45829e+52
This is on an Intel Core Duo running Ubuntu 9.10 64bit. Compiled using gcc 4.4.1 with -o2 optimization.
So in C, yes x*x*x
will be faster than pow(x, 3)
, because there is no pow(double, int)
overload. In C++, it will be the roughly same. (Assuming the methodology in my testing is correct.)
This is in response to the comment made by An Markm:
Even if a using namespace std
directive was issued, if the second parameter to pow
is an int
, then the std::pow(double, int)
overload from <cmath>
will be called instead of ::pow(double, double)
from <math.h>
.
This test code confirms that behavior:
#include <iostream>
namespace foo
{
double bar(double x, int i)
{
std::cout << "foo::bar\n";
return x*i;
}
}
double bar(double x, double y)
{
std::cout << "::bar\n";
return x*y;
}
using namespace foo;
int main()
{
double a = bar(1.2, 3); // Prints "foo::bar"
std::cout << a << "\n";
return 0;
}