Does declaring something like the following
void foo(int x) { std::cout << "foo(int)" << std::endl; }
void foo(const int &x) { std::cout << "foo(const int &)" << std::endl; }
ever make sense? How would the caller be able to differentiate between them? I've tried
foo(9); // Compiler complains ambiguous call.
int x = 9;
foo(x); // Also ambiguous.
const int &y = x;
foo(y); // Also ambiguous.
The intent seems to be to differenciate between invocations with temporaries (i.e. 9
) and 'regular' argument passing. The first case may allow the function implementation to employ optimizations since it is clear that the arguments will be disposed afterwards (which is absolutely senseless for integer literals, but may make sense for user-defined objects).
However, the current C++ language standard does not offer a way to overload specifically for the 'l/r-valueness' of arguments - any l-value being passed as argument to a function can be implicitly converted to a reference, so the ambiguity is unavoidable.
C++11 introduces a new tool for a similar purpose — using r-value references, you can overload as follows
void foo(int x) { ... }
void foo(const int &&x) { ... }
... and foo(4)
(a temporary, r-value passed as argument) would cause the compiler to pick the second overload while int i = 2; foo(i)
would pick the first.
(note: even with the new toolchain, it is not possible to differentiate between the cases 2 and 3 in your sample!)