Sin and Cos give unexpected results for well-known angles

Gemma Morriss picture Gemma Morriss · Jul 19, 2015 · Viewed 33.2k times · Source

I am sure this is a really stupid question, but when I pass an angle of 180 degrees into c/c++'s cos() and sin() functions I appear to receive an incorrect value. I know that it should be: sin of 0.0547 and cos of 0.99 but I get sin of 3.5897934739308216e-009 and cos of -1.00000

My code is:

double radians = DegreesToRadians( angle );
double cosValue = cos( radians );
double sinValue = sin( radians );

DegreesToRadians() is:

double DegreesToRadians( double degrees )
{ 
    return degrees * PI / 180; 
} 

Thank you :)

Answer

chux - Reinstate Monica picture chux - Reinstate Monica · Jul 20, 2015

C/C++ provides sin(a), cos(a), tan(a), etc. functions that require a parameter with radian units rather than degrees. double DegreesToRadians(d) performs a conversion that is close but an approximate as the conversion results are rounded. Also machine M_PI is close, but not the same value as the the mathematical irrational π.

OP's code with 180 passed to DegreesToRadians(d) and then to sin()/cos() gives results that differ than expected due to rounding, finite precision of double() and possible a weak value for PI.

An improvement is to perform argument reduction in degrees before calling the trig function. The below reduces the angle first to a -45° to 45° range and then calls sin(). This will insure that large values of N in sind(90.0*N) --> -1.0, 0.0, 1.0. . Note: sind(360.0*N +/- 30.0) may not exactly equal +/-0.5. Some additional considerations needed.

#include <math.h>
#include <stdio.h>

static double d2r(double d) {
  return (d / 180.0) * ((double) M_PI);
}

double sind(double x) {
  if (!isfinite(x)) {
    return sin(x);
  }
  if (x < 0.0) {
    return -sind(-x);
  }
  int quo;
  double x90 = remquo(fabs(x), 90.0, &quo);
  switch (quo % 4) {
    case 0:
      // Use * 1.0 to avoid -0.0
      return sin(d2r(x90)* 1.0);
    case 1:
      return cos(d2r(x90));
    case 2:
      return sin(d2r(-x90) * 1.0);
    case 3:
      return -cos(d2r(x90));
  }
  return 0.0;
}

int main(void) {
  int i;
  for (i = -360; i <= 360; i += 15) {
    printf("sin()  of %.1f degrees is  % .*e\n", 1.0 * i, DBL_DECIMAL_DIG - 1,
        sin(d2r(i)));
    printf("sind() of %.1f degrees is  % .*e\n", 1.0 * i, DBL_DECIMAL_DIG - 1,
        sind(i));
  }
  return 0;
}

Output

sin()  of -360.0 degrees is   2.4492935982947064e-16
sind() of -360.0 degrees is  -0.0000000000000000e+00  // Exact

sin()  of -345.0 degrees is   2.5881904510252068e-01  // 76-68 = 8 away
//                            2.5881904510252076e-01
sind() of -345.0 degrees is   2.5881904510252074e-01  // 76-74 = 2 away

sin()  of -330.0 degrees is   5.0000000000000044e-01  // 44 away
//  0.5                       5.0000000000000000e-01
sind() of -330.0 degrees is   4.9999999999999994e-01  //  6 away

sin()  of -315.0 degrees is   7.0710678118654768e-01  // 68-52 = 16 away
// square root 0.5 -->        7.0710678118654752e-01
sind() of -315.0 degrees is   7.0710678118654746e-01  // 52-46 = 6 away

sin()  of -300.0 degrees is   8.6602540378443860e-01
sind() of -300.0 degrees is   8.6602540378443871e-01
sin()  of -285.0 degrees is   9.6592582628906842e-01
sind() of -285.0 degrees is   9.6592582628906831e-01
sin()  of -270.0 degrees is   1.0000000000000000e+00  // Exact
sind() of -270.0 degrees is   1.0000000000000000e+00  // Exact
...