I am a C guy and I'm trying to understand some C++ code. I have the following function declaration:
int foo(const string &myname) {
cout << "called foo for: " << myname << endl;
return 0;
}
How does the function signature differ from the equivalent C:
int foo(const char *myname)
Is there a difference between using string *myname
vs string &myname
? What is the difference between &
in C++ and *
in C to indicate pointers?
Similarly:
const string &GetMethodName() { ... }
What is the &
doing here? Is there some website that explains how &
is used differently in C vs C++?
The "&" denotes a reference instead of a pointer to an object (In your case a constant reference).
The advantage of having a function such as
foo(string const& myname)
over
foo(string const* myname)
is that in the former case you are guaranteed that myname is non-null, since C++ does not allow NULL references. Since you are passing by reference, the object is not copied, just like if you were passing a pointer.
Your second example:
const string &GetMethodName() { ... }
Would allow you to return a constant reference to, for example, a member variable. This is useful if you do not wish a copy to be returned, and again be guaranteed that the value returned is non-null. As an example, the following allows you direct, read-only access:
class A
{
public:
int bar() const {return someValue;}
//Big, expensive to copy class
}
class B
{
public:
A const& getA() { return mA;}
private:
A mA;
}
void someFunction()
{
B b = B();
//Access A, ability to call const functions on A
//No need to check for null, since reference is guaranteed to be valid.
int value = b.getA().bar();
}
You have to of course be careful to not return invalid references. Compilers will happily compile the following (depending on your warning level and how you treat warnings)
int const& foo()
{
int a;
//This is very bad, returning reference to something on the stack. This will
//crash at runtime.
return a;
}
Basically, it is your responsibility to ensure that whatever you are returning a reference to is actually valid.