I have an algorithm for converting between a Quaternion and Euler angles.
public static Vector3 ToEulerAngles(this Quaternion q)
{
// Store the Euler angles in radians
Vector3 pitchYawRoll = new Vector3();
double sqw = q.W * q.W;
double sqx = q.X * q.X;
double sqy = q.Y * q.Y;
double sqz = q.Z * q.Z;
// If quaternion is normalised the unit is one, otherwise it is the correction factor
double unit = sqx + sqy + sqz + sqw;
double test = q.X * q.Y + q.Z * q.W;
if (test > 0.4999f * unit) // 0.4999f OR 0.5f - EPSILON
{
// Singularity at north pole
pitchYawRoll.Y = 2f * (float)Math.Atan2(q.X, q.W); // Yaw
pitchYawRoll.X = PI * 0.5f; // Pitch
pitchYawRoll.Z = 0f; // Roll
return pitchYawRoll;
}
else if (test < -0.4999f * unit) // -0.4999f OR -0.5f + EPSILON
{
// Singularity at south pole
pitchYawRoll.Y = -2f * (float)Math.Atan2(q.X, q.W); // Yaw
pitchYawRoll.X = -PI * 0.5f; // Pitch
pitchYawRoll.Z = 0f; // Roll
return pitchYawRoll;
}
else
{
pitchYawRoll.Y = (float)Math.Atan2(2f * q.Y * q.W - 2f * q.X * q.Z, sqx - sqy - sqz + sqw); // Yaw
pitchYawRoll.X = (float)Math.Asin(2f * test / unit); // Pitch
pitchYawRoll.Z = (float)Math.Atan2(2f * q.X * q.W - 2f * q.Y * q.Z, -sqx + sqy - sqz + sqw); // Roll
}
return pitchYawRoll;
}
This method only works for a right-handed Cartesian coordinate system with the Z axis pointing up.
What would I change in order to make the Y axis point up instead of Z? (Would swapping X and Z work?)
How can I accommodate left handed coordinate systems?
EDIT:
public static Quaternion CreateFromYawPitchRoll(float yaw, float pitch, float roll)
{
float num = roll * 0.5f;
float num2 = (float)Math.Sin((double)num);
float num3 = (float)Math.Cos((double)num);
float num4 = pitch * 0.5f;
float num5 = (float)Math.Sin((double)num4);
float num6 = (float)Math.Cos((double)num4);
float num7 = yaw * 0.5f;
float num8 = (float)Math.Sin((double)num7);
float num9 = (float)Math.Cos((double)num7);
Quaternion result;
result.X = num9 * num5 * num3 + num8 * num6 * num2;
result.Y = num8 * num6 * num3 - num9 * num5 * num2;
result.Z = num9 * num6 * num2 - num8 * num5 * num3;
result.W = num9 * num6 * num3 + num8 * num5 * num2;
return result;
}
Here are changed methods that use the same definition of yaw, pitch, roll:
public static Quaternion CreateFromYawPitchRoll(float yaw, float pitch, float roll)
{
float rollOver2 = roll * 0.5f;
float sinRollOver2 = (float)Math.Sin((double)rollOver2);
float cosRollOver2 = (float)Math.Cos((double)rollOver2);
float pitchOver2 = pitch * 0.5f;
float sinPitchOver2 = (float)Math.Sin((double)pitchOver2);
float cosPitchOver2 = (float)Math.Cos((double)pitchOver2);
float yawOver2 = yaw * 0.5f;
float sinYawOver2 = (float)Math.Sin((double)yawOver2);
float cosYawOver2 = (float)Math.Cos((double)yawOver2);
Quaternion result;
result.X = cosYawOver2 * cosPitchOver2 * cosRollOver2 + sinYawOver2 * sinPitchOver2 * sinRollOver2;
result.Y = cosYawOver2 * cosPitchOver2 * sinRollOver2 - sinYawOver2 * sinPitchOver2 * cosRollOver2;
result.Z = cosYawOver2 * sinPitchOver2 * cosRollOver2 + sinYawOver2 * cosPitchOver2 * sinRollOver2;
result.W = sinYawOver2 * cosPitchOver2 * cosRollOver2 - cosYawOver2 * sinPitchOver2 * sinRollOver2;
return result;
}
For ToEulerAngles
(singularities ommitted):
pitchYawRoll.Y = (float)Math.Atan2(2f * q.X * q.W + 2f * q.Y * q.Z, 1 - 2f * (sqz + sqw)); // Yaw
pitchYawRoll.X = (float)Math.Asin(2f * ( q.X * q.Z - q.W * q.Y ) ); // Pitch
pitchYawRoll.Z = (float)Math.Atan2(2f * q.X * q.Y + 2f * q.Z * q.W, 1 - 2f * (sqy + sqz)); // Roll
I performed the following test:
var q = CreateFromYawPitchRoll(0.2f, 0.3f, 0.7f);
var e = ToEulerAngles(q);
var q2 = CreateFromYawPitchRoll(e.Y, e.X, e.Z);
with the following results;
e = (0.3, 0.2, 0.7) //pitch, yaw, roll
q2 = q
Source: Wikipedia