I have a numpy array with a shape of:
(11L, 5L, 5L)
I want to calculate the mean over the 25 elements of each 'slice' of the array [0, :, :], [1, :, :] etc, returning 11 values.
It seems silly, but I can't work out how to do this. I've thought the mean(axis=x)
function would do this, but I've tried all possible combinations of axis and none of them give me the result I want.
I can obviously do this using a for loop and slicing, but surely there is a better way?
Use a tuple for axis :
>>> a = np.arange(11*5*5).reshape(11,5,5)
>>> a.mean(axis=(1,2))
array([ 12., 37., 62., 87., 112., 137., 162., 187., 212.,
237., 262.])
Edit: This works only with numpy version 1.7+.