Overwrite only some partitions in a partitioned spark Dataset

Madhava Carrillo picture Madhava Carrillo · Apr 24, 2018 · Viewed 11.3k times · Source

How can we overwrite a partitioned dataset, but only the partitions we are going to change? For example, recomputing last week daily job, and only overwriting last week of data.

Default Spark behaviour is to overwrite the whole table, even if only some partitions are going to be written.

Answer

Madhava Carrillo picture Madhava Carrillo · Apr 24, 2018

Since Spark 2.3.0 this is an option when overwriting a table. To overwrite it, you need to set the new spark.sql.sources.partitionOverwriteMode setting to dynamic, the dataset needs to be partitioned, and the write mode overwrite. Example in scala:

spark.conf.set(
  "spark.sql.sources.partitionOverwriteMode", "dynamic"
)
data.write.mode("overwrite").insertInto("partitioned_table")

I recommend doing a repartition based on your partition column before writing, so you won't end up with 400 files per folder.

Before Spark 2.3.0, the best solution would be to launch SQL statements to delete those partitions and then write them with mode append.