I have an RDD with a tuple of values (String, SparseVector) and I want to create a DataFrame using the RDD. To get a (label:string, features:vector) DataFrame which is the Schema required by most of the ml algorithm's libraries. I know it can be done because HashingTF ml Library outputs a vector when given a features column of a DataFrame.
temp_df = sqlContext.createDataFrame(temp_rdd, StructType([
StructField("label", DoubleType(), False),
StructField("tokens", ArrayType(StringType()), False)
]))
#assumming there is an RDD (double,array(strings))
hashingTF = HashingTF(numFeatures=COMBINATIONS, inputCol="tokens", outputCol="features")
ndf = hashingTF.transform(temp_df)
ndf.printSchema()
#outputs
#root
#|-- label: double (nullable = false)
#|-- tokens: array (nullable = false)
#| |-- element: string (containsNull = true)
#|-- features: vector (nullable = true)
So my question is, can I somehow having an RDD of (String, SparseVector) convert it to a DataFrame of (String, vector).
I tried with the usual sqlContext.createDataFrame
but there is no DataType that fits the needs I have.
df = sqlContext.createDataFrame(rdd,StructType([
StructField("label" , StringType(),True),
StructField("features" , ?Type(),True)
]))
You have to use VectorUDT
here:
# In Spark 1.x
# from pyspark.mllib.linalg import SparseVector, VectorUDT
from pyspark.ml.linalg import SparseVector, VectorUDT
temp_rdd = sc.parallelize([
(0.0, SparseVector(4, {1: 1.0, 3: 5.5})),
(1.0, SparseVector(4, {0: -1.0, 2: 0.5}))])
schema = StructType([
StructField("label", DoubleType(), True),
StructField("features", VectorUDT(), True)
])
temp_rdd.toDF(schema).printSchema()
## root
## |-- label: double (nullable = true)
## |-- features: vector (nullable = true)
Just for completeness Scala equivalent:
import org.apache.spark.sql.Row
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{DoubleType, StructType}
// In Spark 1x.
// import org.apache.spark.mllib.linalg.{Vectors, VectorUDT}
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.linalg.SQLDataTypes.VectorType
val schema = new StructType()
.add("label", DoubleType)
// In Spark 1.x
//.add("features", new VectorUDT())
.add("features",VectorType)
val temp_rdd: RDD[Row] = sc.parallelize(Seq(
Row(0.0, Vectors.sparse(4, Seq((1, 1.0), (3, 5.5)))),
Row(1.0, Vectors.sparse(4, Seq((0, -1.0), (2, 0.5))))
))
spark.createDataFrame(temp_rdd, schema).printSchema
// root
// |-- label: double (nullable = true)
// |-- features: vector (nullable = true)