I want to use pyspark.mllib.stat.Statistics.corr
function to compute correlation between two columns of pyspark.sql.dataframe.DataFrame
object. corr
function expects to take an rdd
of Vectors
objects. How do I translate a column of df['some_name']
to rdd
of Vectors.dense
object?
There should be no need for that. For numerical you can compute correlation directly using DataFrameStatFunctions.corr
:
df1 = sc.parallelize([(0.0, 1.0), (1.0, 0.0)]).toDF(["x", "y"])
df1.stat.corr("x", "y")
# -1.0
otherwise you can use VectorAssembler
:
from pyspark.ml.feature import VectorAssembler
assembler = VectorAssembler(inputCols=df.columns, outputCol="features")
assembler.transform(df).select("features").flatMap(lambda x: x)