Okay, this all takes place in a nice and simple 2D world... :)
Suppose I have a static object A at position Apos, and a linearly moving object B at Bpos with bVelocity, and an ammo round with velocity Avelocity...
How would I find out the angle that A has to shoot, to hit B, taking into account B's linear velocity and the speed of A's ammo ?
Right now the aim's at the current position of the object, which means that by the time my projectile gets there the unit has moved on to safer positions :)
I wrote an aiming subroutine for xtank a while back. I'll try to lay out how I did it.
Disclaimer: I may have made one or more silly mistakes anywhere in here; I'm just trying to reconstruct the reasoning with my rusty math skills. However, I'll cut to the chase first, since this is a programming Q&A instead of a math class :-)
It boils down to solving a quadratic equation of the form:
a * sqr(x) + b * x + c == 0
Note that by sqr
I mean square, as opposed to square root. Use the following values:
a := sqr(target.velocityX) + sqr(target.velocityY) - sqr(projectile_speed)
b := 2 * (target.velocityX * (target.startX - cannon.X)
+ target.velocityY * (target.startY - cannon.Y))
c := sqr(target.startX - cannon.X) + sqr(target.startY - cannon.Y)
Now we can look at the discriminant to determine if we have a possible solution.
disc := sqr(b) - 4 * a * c
If the discriminant is less than 0, forget about hitting your target -- your projectile can never get there in time. Otherwise, look at two candidate solutions:
t1 := (-b + sqrt(disc)) / (2 * a)
t2 := (-b - sqrt(disc)) / (2 * a)
Note that if disc == 0
then t1
and t2
are equal.
If there are no other considerations such as intervening obstacles, simply choose the smaller positive value. (Negative t values would require firing backward in time to use!)
Substitute the chosen t
value back into the target's position equations to get the coordinates of the leading point you should be aiming at:
aim.X := t * target.velocityX + target.startX
aim.Y := t * target.velocityY + target.startY
At time T, the projectile must be a (Euclidean) distance from the cannon equal to the elapsed time multiplied by the projectile speed. This gives an equation for a circle, parametric in elapsed time.
sqr(projectile.X - cannon.X) + sqr(projectile.Y - cannon.Y)
== sqr(t * projectile_speed)
Similarly, at time T, the target has moved along its vector by time multiplied by its velocity:
target.X == t * target.velocityX + target.startX
target.Y == t * target.velocityY + target.startY
The projectile can hit the target when its distance from the cannon matches the projectile's distance.
sqr(projectile.X - cannon.X) + sqr(projectile.Y - cannon.Y)
== sqr(target.X - cannon.X) + sqr(target.Y - cannon.Y)
Wonderful! Substituting the expressions for target.X and target.Y gives
sqr(projectile.X - cannon.X) + sqr(projectile.Y - cannon.Y)
== sqr((t * target.velocityX + target.startX) - cannon.X)
+ sqr((t * target.velocityY + target.startY) - cannon.Y)
Substituting the other side of the equation gives this:
sqr(t * projectile_speed)
== sqr((t * target.velocityX + target.startX) - cannon.X)
+ sqr((t * target.velocityY + target.startY) - cannon.Y)
... subtracting sqr(t * projectile_speed)
from both sides and flipping it around:
sqr((t * target.velocityX) + (target.startX - cannon.X))
+ sqr((t * target.velocityY) + (target.startY - cannon.Y))
- sqr(t * projectile_speed)
== 0
... now resolve the results of squaring the subexpressions ...
sqr(target.velocityX) * sqr(t)
+ 2 * t * target.velocityX * (target.startX - cannon.X)
+ sqr(target.startX - cannon.X)
+ sqr(target.velocityY) * sqr(t)
+ 2 * t * target.velocityY * (target.startY - cannon.Y)
+ sqr(target.startY - cannon.Y)
- sqr(projectile_speed) * sqr(t)
== 0
... and group similar terms ...
sqr(target.velocityX) * sqr(t)
+ sqr(target.velocityY) * sqr(t)
- sqr(projectile_speed) * sqr(t)
+ 2 * t * target.velocityX * (target.startX - cannon.X)
+ 2 * t * target.velocityY * (target.startY - cannon.Y)
+ sqr(target.startX - cannon.X)
+ sqr(target.startY - cannon.Y)
== 0
... then combine them ...
(sqr(target.velocityX) + sqr(target.velocityY) - sqr(projectile_speed)) * sqr(t)
+ 2 * (target.velocityX * (target.startX - cannon.X)
+ target.velocityY * (target.startY - cannon.Y)) * t
+ sqr(target.startX - cannon.X) + sqr(target.startY - cannon.Y)
== 0
... giving a standard quadratic equation in t. Finding the positive real zeros of this equation gives the (zero, one, or two) possible hit locations, which can be done with the quadratic formula:
a * sqr(x) + b * x + c == 0
x == (-b ± sqrt(sqr(b) - 4 * a * c)) / (2 * a)