Finding Big O of the Harmonic Series

user2092408 picture user2092408 · Sep 18, 2014 · Viewed 42.1k times · Source

Prove that

1 + 1/2 + 1/3 + ... + 1/n is O(log n). 
Assume n = 2^k

I put the series into the summation, but I have no idea how to tackle this problem. Any help is appreciated

Answer

chiwangc picture chiwangc · Sep 18, 2014

This follows easily from a simple fact in Calculus:

enter image description here

and we have the following inequality:

enter image description here

Here we can conclude that S = 1 + 1/2 + ... + 1/n is both Ω(log(n)) and O(log(n)), thus it is Ɵ(log(n)), the bound is actually tight.