Every time I run LSTM network with Keras in jupyter notebook, I got a different result, and I have googled a lot, and I have tried some different solutions, but none of they are work, here are some solutions I tried:
set numpy random seed
random_seed=2017
from numpy.random import seed
seed(random_seed)
set tensorflow random seed
from tensorflow import set_random_seed
set_random_seed(random_seed)
set build-in random seed
import random
random.seed(random_seed)
set PYTHONHASHSEED
import os
os.environ['PYTHONHASHSEED'] = '0'
add PYTHONHASHSEED in jupyter notebook kernel.json
{
"language": "python",
"display_name": "Python 3",
"env": {"PYTHONHASHSEED": "0"},
"argv": [
"python",
"-m",
"ipykernel_launcher",
"-f",
"{connection_file}"
]
}
and the version of my env is:
Keras: 2.0.6
Tensorflow: 1.2.1
CPU or GPU: CPU
and this is my code:
model = Sequential()
model.add(LSTM(16, input_shape=(time_steps,nb_features), return_sequences=True))
model.add(LSTM(16, input_shape=(time_steps,nb_features), return_sequences=False))
model.add(Dense(8,activation='relu'))
model.add(Dense(1,activation='linear'))
model.compile(loss='mse',optimizer='adam')
The seed is definitely missing from your model definition. A detailed documentation can be found here: https://keras.io/initializers/.
In essence your layers use random variables as their basis for their parameters. Therefore you get different outputs every time.
One example:
model.add(Dense(1, activation='linear',
kernel_initializer=keras.initializers.RandomNormal(seed=1337),
bias_initializer=keras.initializers.Constant(value=0.1))
Keras themselves have a section about getting reproduceable results in their FAQ section: (https://keras.io/getting-started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development). They have the following code snippet to produce reproducable results:
import numpy as np
import tensorflow as tf
import random as rn
# The below is necessary in Python 3.2.3 onwards to
# have reproducible behavior for certain hash-based operations.
# See these references for further details:
# https://docs.python.org/3.4/using/cmdline.html#envvar-PYTHONHASHSEED
# https://github.com/fchollet/keras/issues/2280#issuecomment-306959926
import os
os.environ['PYTHONHASHSEED'] = '0'
# The below is necessary for starting Numpy generated random numbers
# in a well-defined initial state.
np.random.seed(42)
# The below is necessary for starting core Python generated random numbers
# in a well-defined state.
rn.seed(12345)
# Force TensorFlow to use single thread.
# Multiple threads are a potential source of
# non-reproducible results.
# For further details, see: https://stackoverflow.com/questions/42022950/which-seeds-have-to-be-set-where-to-realize-100-reproducibility-of-training-res
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
from keras import backend as K
# The below tf.set_random_seed() will make random number generation
# in the TensorFlow backend have a well-defined initial state.
# For further details, see: https://www.tensorflow.org/api_docs/python/tf/set_random_seed
tf.set_random_seed(1234)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)