Tensorflow: loss decreasing, but accuracy stable

Justin Eyster picture Justin Eyster · Apr 19, 2017 · Viewed 21.9k times · Source

My team is training a CNN in Tensorflow for binary classification of damaged/acceptable parts. We created our code by modifying the cifar10 example code. In my prior experience with Neural Networks, I always trained until the loss was very close to 0 (well below 1). However, we are now evaluating our model with a validation set during training (on a separate GPU), and it seems like the precision stopped increasing after about 6.7k steps, while the loss is still dropping steadily after over 40k steps. Is this due to overfitting? Should we expect to see another spike in accuracy once the loss is very close to zero? The current max accuracy is not acceptable. Should we kill it and keep tuning? What do you recommend? Here is our modified code and graphs of the training process.

https://gist.github.com/justineyster/6226535a8ee3f567e759c2ff2ae3776b

Precision and Loss Images

Answer

rafaelvalle picture rafaelvalle · Sep 20, 2017

A decrease in binary cross-entropy loss does not imply an increase in accuracy. Consider label 1, predictions 0.2, 0.4 and 0.6 at timesteps 1, 2, 3 and classification threshold 0.5. timesteps 1 and 2 will produce a decrease in loss but no increase in accuracy.

Ensure that your model has enough capacity by overfitting the training data. If the model is overfitting the training data, avoid overfitting by using regularization techniques such as dropout, L1 and L2 regularization and data augmentation.

Last, confirm your validation data and training data come from the same distribution.