When I create a DataFrame
from a JSON file in Spark SQL, how can I tell if a given column exists before calling .select
Example JSON schema:
{
"a": {
"b": 1,
"c": 2
}
}
This is what I want to do:
potential_columns = Seq("b", "c", "d")
df = sqlContext.read.json(filename)
potential_columns.map(column => if(df.hasColumn(column)) df.select(s"a.$column"))
but I can't find a good function for hasColumn
. The closest I've gotten is to test if the column is in this somewhat awkward array:
scala> df.select("a.*").columns
res17: Array[String] = Array(b, c)
Just assume it exists and let it fail with Try
. Plain and simple and supports an arbitrary nesting:
import scala.util.Try
import org.apache.spark.sql.DataFrame
def hasColumn(df: DataFrame, path: String) = Try(df(path)).isSuccess
val df = sqlContext.read.json(sc.parallelize(
"""{"foo": [{"bar": {"foobar": 3}}]}""" :: Nil))
hasColumn(df, "foobar")
// Boolean = false
hasColumn(df, "foo")
// Boolean = true
hasColumn(df, "foo.bar")
// Boolean = true
hasColumn(df, "foo.bar.foobar")
// Boolean = true
hasColumn(df, "foo.bar.foobaz")
// Boolean = false
Or even simpler:
val columns = Seq(
"foobar", "foo", "foo.bar", "foo.bar.foobar", "foo.bar.foobaz")
columns.flatMap(c => Try(df(c)).toOption)
// Seq[org.apache.spark.sql.Column] = List(
// foo, foo.bar AS bar#12, foo.bar.foobar AS foobar#13)
Python equivalent:
from pyspark.sql.utils import AnalysisException
from pyspark.sql import Row
def has_column(df, col):
try:
df[col]
return True
except AnalysisException:
return False
df = sc.parallelize([Row(foo=[Row(bar=Row(foobar=3))])]).toDF()
has_column(df, "foobar")
## False
has_column(df, "foo")
## True
has_column(df, "foo.bar")
## True
has_column(df, "foo.bar.foobar")
## True
has_column(df, "foo.bar.foobaz")
## False