How to query JSON data column using Spark DataFrames?

JDesuv picture JDesuv · Dec 3, 2015 · Viewed 69.5k times · Source

I have a Cassandra table that for simplicity looks something like:

key: text
jsonData: text
blobData: blob

I can create a basic data frame for this using spark and the spark-cassandra-connector using:

val df = sqlContext.read
  .format("org.apache.spark.sql.cassandra")
  .options(Map("table" -> "mytable", "keyspace" -> "ks1"))
  .load()

I'm struggling though to expand the JSON data into its underlying structure. I ultimately want to be able to filter based on the attributes within the json string and return the blob data. Something like jsonData.foo = "bar" and return blobData. Is this currently possible?

Answer

zero323 picture zero323 · Dec 3, 2015

Spark >= 2.4

If needed, schema can be determined using schema_of_json function (please note that this assumes that an arbitrary row is a valid representative of the schema).

import org.apache.spark.sql.functions.{lit, schema_of_json, from_json}
import collection.JavaConverters._

val schema = schema_of_json(lit(df.select($"jsonData").as[String].first))
df.withColumn("jsonData", from_json($"jsonData", schema, Map[String, String]().asJava))

Spark >= 2.1

You can use from_json function:

import org.apache.spark.sql.functions.from_json
import org.apache.spark.sql.types._

val schema = StructType(Seq(
  StructField("k", StringType, true), StructField("v", DoubleType, true)
))

df.withColumn("jsonData", from_json($"jsonData", schema))

Spark >= 1.6

You can use get_json_object which takes a column and a path:

import org.apache.spark.sql.functions.get_json_object

val exprs = Seq("k", "v").map(
  c => get_json_object($"jsonData", s"$$.$c").alias(c))

df.select($"*" +: exprs: _*)

and extracts fields to individual strings which can be further casted to expected types.

The path argument is expressed using dot syntax, with leading $. denoting document root (since the code above uses string interpolation $ has to be escaped, hence $$.).

Spark <= 1.5:

Is this currently possible?

As far as I know it is not directly possible. You can try something similar to this:

val df = sc.parallelize(Seq(
  ("1", """{"k": "foo", "v": 1.0}""", "some_other_field_1"),
  ("2", """{"k": "bar", "v": 3.0}""", "some_other_field_2")
)).toDF("key", "jsonData", "blobData")

I assume that blob field cannot be represented in JSON. Otherwise you cab omit splitting and joining:

import org.apache.spark.sql.Row

val blobs = df.drop("jsonData").withColumnRenamed("key", "bkey")
val jsons = sqlContext.read.json(df.drop("blobData").map{
  case Row(key: String, json: String) =>
    s"""{"key": "$key", "jsonData": $json}"""
}) 

val parsed = jsons.join(blobs, $"key" === $"bkey").drop("bkey")
parsed.printSchema

// root
//  |-- jsonData: struct (nullable = true)
//  |    |-- k: string (nullable = true)
//  |    |-- v: double (nullable = true)
//  |-- key: long (nullable = true)
//  |-- blobData: string (nullable = true)

An alternative (cheaper, although more complex) approach is to use an UDF to parse JSON and output a struct or map column. For example something like this:

import net.liftweb.json.parse

case class KV(k: String, v: Int)

val parseJson = udf((s: String) => {
  implicit val formats = net.liftweb.json.DefaultFormats
  parse(s).extract[KV]
})

val parsed = df.withColumn("parsedJSON", parseJson($"jsonData"))
parsed.show

// +---+--------------------+------------------+----------+
// |key|            jsonData|          blobData|parsedJSON|
// +---+--------------------+------------------+----------+
// |  1|{"k": "foo", "v":...|some_other_field_1|   [foo,1]|
// |  2|{"k": "bar", "v":...|some_other_field_2|   [bar,3]|
// +---+--------------------+------------------+----------+

parsed.printSchema

// root
//  |-- key: string (nullable = true)
//  |-- jsonData: string (nullable = true)
//  |-- blobData: string (nullable = true)
//  |-- parsedJSON: struct (nullable = true)
//  |    |-- k: string (nullable = true)
//  |    |-- v: integer (nullable = false)