Flattening Rows in Spark

Nir Ben Yaacov picture Nir Ben Yaacov · Oct 2, 2015 · Viewed 68.5k times · Source

I am doing some testing for spark using scala. We usually read json files which needs to be manipulated like the following example:

test.json:

{"a":1,"b":[2,3]}
val test = sqlContext.read.json("test.json")

How can I convert it to the following format:

{"a":1,"b":2}
{"a":1,"b":3}

Answer

zero323 picture zero323 · Oct 2, 2015

You can use explode function:

scala> import org.apache.spark.sql.functions.explode
import org.apache.spark.sql.functions.explode


scala> val test = sqlContext.read.json(sc.parallelize(Seq("""{"a":1,"b":[2,3]}""")))
test: org.apache.spark.sql.DataFrame = [a: bigint, b: array<bigint>]

scala> test.printSchema
root
 |-- a: long (nullable = true)
 |-- b: array (nullable = true)
 |    |-- element: long (containsNull = true)

scala> val flattened = test.withColumn("b", explode($"b"))
flattened: org.apache.spark.sql.DataFrame = [a: bigint, b: bigint]

scala> flattened.printSchema
root
 |-- a: long (nullable = true)
 |-- b: long (nullable = true)

scala> flattened.show
+---+---+
|  a|  b|
+---+---+
|  1|  2|
|  1|  3|
+---+---+