How to create an empty DataFrame with a specified schema?

user1735076 picture user1735076 · Jul 17, 2015 · Viewed 152.4k times · Source

I want to create on DataFrame with a specified schema in Scala. I have tried to use JSON read (I mean reading empty file) but I don't think that's the best practice.

Answer

zero323 picture zero323 · Jul 17, 2015

Lets assume you want a data frame with the following schema:

root
 |-- k: string (nullable = true)
 |-- v: integer (nullable = false)

You simply define schema for a data frame and use empty RDD[Row]:

import org.apache.spark.sql.types.{
    StructType, StructField, StringType, IntegerType}
import org.apache.spark.sql.Row

val schema = StructType(
    StructField("k", StringType, true) ::
    StructField("v", IntegerType, false) :: Nil)

// Spark < 2.0
// sqlContext.createDataFrame(sc.emptyRDD[Row], schema) 
spark.createDataFrame(sc.emptyRDD[Row], schema)

PySpark equivalent is almost identical:

from pyspark.sql.types import StructType, StructField, IntegerType, StringType

schema = StructType([
    StructField("k", StringType(), True), StructField("v", IntegerType(), False)
])

# or df = sc.parallelize([]).toDF(schema)

# Spark < 2.0 
# sqlContext.createDataFrame([], schema)
df = spark.createDataFrame([], schema)

Using implicit encoders (Scala only) with Product types like Tuple:

import spark.implicits._

Seq.empty[(String, Int)].toDF("k", "v")

or case class:

case class KV(k: String, v: Int)

Seq.empty[KV].toDF

or

spark.emptyDataset[KV].toDF