df1 <-
data.frame(c("male", "female", "male"),
c("1", "2", "3", "4", "5", "6"),
seq(141, 170))
names(df1) = c("gender", "age", "height")
df1$age <- factor(
df1$age,
levels = c(1, 2, 3, 4, 5, 6),
labels = c("16-24", "25-34", "35-44", "45-54", "55-64", "65+")
)
q1a = c(1, 0, 1, 0, 0, 1)
q1b = c(0, 0, 2, 2, 2, 0)
q1c = c(0, 0, 3, 3, 0, 3)
# 1,2 and 3 used to be compatible with existing datasets.
# Could change all to 1 if necessary.
df2 <- data.frame(q1a = q1a, q1b = q1b, q1c = q1c)
df1 <- cbind(df1, df2)
rm(q1a, q1b, q1c, df2)
I am looking to replicate the analysis of multiple response questions from SPSS in R.
At the moment I am using this code:
#creating function for analysing questions with grouped data
multfreqtable <- function(a, b, c) {
# number of respondents (for percent of cases)
totrep = sum(a == 1 | b == 2 | c == 3)
#creating frequency table
table_a = data.frame("a", sum(a == 1))
names(table_a) = c("question", "freq")
table_b = data.frame("b", sum(b == 2))
names(table_b) = c("question", "freq")
table_c = data.frame("c", sum(c == 3))
names(table_c) = c("question", "freq")
table_question <- rbind(table_a, table_b, table_c)
#remove individual question tables
rm(table_a, table_b, table_c)
#adding total
total = as.data.frame("Total")
totalsum = (sum(table_question$freq, na.rm = TRUE))
totalrow = cbind(total, totalsum)
names(totalrow) = c("question", "freq")
table_question = rbind(table_question, totalrow)
#adding percentage column to frequency table
percentcalc = as.numeric(table_question$freq)
percent = (percentcalc / totalsum) * 100
table_question <- cbind(table_question, percent)
#adding percent of cases column to frequency table
poccalc = as.numeric(table_question$freq)
percentofcases = (poccalc / totrep) * 100
table_question <- cbind(table_question, percentofcases)
#print percent of cases value
total_respondents <<- data.frame(totrep)
#remove all unnecessary data and values
rm(
total,
totalsum,
totalrow,
b,
c,
percent,
percentcalc,
percentofcases,
totrep,
poccalc
)
return(table_question)
}
#calling function - must tie to data.frame using $ !!!
q1_frequency <- multfreqtable(df1$q1a, df1$q1b, df1$q1c)
#renaming percent of cases - This is very important while using current method
total_respondents_q1 <- total_respondents
rm(total_respondents)
Producing this table as a result:
I am looking for a more efficient method of doing this that ideally would not require the function to be edited if there were more or less multiple choice questions.
Your function is actually far too complicated for what you need to do. I think a function like this should work and be more flexible.
multfreqtable = function(data, question.prefix) {
# Find the columns with the questions
a = grep(question.prefix, names(data))
# Find the total number of responses
b = sum(data[, a] != 0)
# Find the totals for each question
d = colSums(data[, a] != 0)
# Find the number of respondents
e = sum(rowSums(data[,a]) !=0)
# d + b as a vector. This is your overfall frequency
f = as.numeric(c(d, b))
data.frame(question = c(names(d), "Total"),
freq = f,
percent = (f/b)*100,
percentofcases = (f/e)*100 )
}
Add another question to your example dataset:
set.seed(1); df1$q2a = sample(c(0, 1), 30, replace=T)
set.seed(2); df1$q2b = sample(c(0, 2), 30, replace=T)
set.seed(3); df1$q2c = sample(c(0, 3), 30, replace=T)
Make a table for "q1" responses:
> multfreqtable(df1, "q1")
question freq percent percentofcases
1 q1a 15 33.33333 60
2 q1b 15 33.33333 60
3 q1c 15 33.33333 60
4 Total 45 100.00000 180
Make a table for "q2" responses:
> multfreqtable(df1, "q2")
question freq percent percentofcases
1 q2a 14 31.11111 53.84615
2 q2b 13 28.88889 50.00000
3 q2c 18 40.00000 69.23077
4 Total 45 100.00000 173.07692
Here's a modified version of the function that allows you to create a list of tables for multiple questions at once:
multfreqtable = function(data, question.prefix) {
z = length(question.prefix)
temp = vector("list", z)
for (i in 1:z) {
a = grep(question.prefix[i], names(data))
b = sum(data[, a] != 0)
d = colSums(data[, a] != 0)
e = sum(rowSums(data[,a]) !=0)
f = as.numeric(c(d, b))
temp[[i]] = data.frame(question = c(sub(question.prefix[i],
"", names(d)), "Total"),
freq = f,
percent = (f/b)*100,
percentofcases = (f/e)*100 )
names(temp)[i] = question.prefix[i]
}
temp
}
Examples:
> multfreqtable(df1, "q1")
$q1
question freq percent percentofcases
1 a 15 33.33333 60
2 b 15 33.33333 60
3 c 15 33.33333 60
4 Total 45 100.00000 180
> test1 = multfreqtable(df1, c("q1", "q2"))
> test1
$q1
question freq percent percentofcases
1 a 15 33.33333 60
2 b 15 33.33333 60
3 c 15 33.33333 60
4 Total 45 100.00000 180
$q2
question freq percent percentofcases
1 a 14 31.11111 53.84615
2 b 13 28.88889 50.00000
3 c 18 40.00000 69.23077
4 Total 45 100.00000 173.07692
> test1$q1
question freq percent percentofcases
1 a 15 33.33333 60
2 b 15 33.33333 60
3 c 15 33.33333 60
4 Total 45 100.00000 180