I have a dataset akin to this
User Date Value
A 2012-01-01 4
A 2012-01-02 5
A 2012-01-03 6
A 2012-01-04 7
B 2012-01-01 2
B 2012-01-02 3
B 2012-01-03 4
B 2012-01-04 5
I want to create a lag of Value
, respecting User
.
User Date Value Value.lag
A 2012-01-01 4 NA
A 2012-01-02 5 4
A 2012-01-03 6 5
A 2012-01-04 7 6
B 2012-01-01 2 NA
B 2012-01-02 3 2
B 2012-01-03 4 3
B 2012-01-04 5 4
I've done it very inefficiently in a loop
df$value.lag1<-NA
levs<-levels(as.factor(df$User))
levs
for (i in 1:length(levs)) {
temper<- subset(df,User==as.numeric(levs[i]))
temper<- rbind(NA,temper[-nrow(temper),])
df$value.lag1[df$User==as.numeric(as.character(levs[i]))]<- temper
}
But this is very slow. I've looked at using by
and tapply
, but not figured out how to make them work.
I don't think XTS or TS will work because of the User element.
Any suggestions?
You can use ddply
: it cuts a data.frame into pieces and transforms each piece.
d <- data.frame(
User = rep( LETTERS[1:3], each=10 ),
Date = seq.Date( Sys.Date(), length=30, by="day" ),
Value = rep(1:10, 3)
)
library(plyr)
d <- ddply(
d, .(User), transform,
# This assumes that the data is sorted
Value = c( NA, Value[-length(Value)] )
)