I see a lot of questions and answers re order
and sort
. Is there anything that sorts vectors or data frames into groupings (like quartiles or deciles)? I have a "manual" solution, but there's likely a better solution that has been group-tested.
Here's my attempt:
temp <- data.frame(name=letters[1:12], value=rnorm(12), quartile=rep(NA, 12))
temp
# name value quartile
# 1 a 2.55118169 NA
# 2 b 0.79755259 NA
# 3 c 0.16918905 NA
# 4 d 1.73359245 NA
# 5 e 0.41027113 NA
# 6 f 0.73012966 NA
# 7 g -1.35901658 NA
# 8 h -0.80591167 NA
# 9 i 0.48966739 NA
# 10 j 0.88856758 NA
# 11 k 0.05146856 NA
# 12 l -0.12310229 NA
temp.sorted <- temp[order(temp$value), ]
temp.sorted$quartile <- rep(1:4, each=12/4)
temp <- temp.sorted[order(as.numeric(rownames(temp.sorted))), ]
temp
# name value quartile
# 1 a 2.55118169 4
# 2 b 0.79755259 3
# 3 c 0.16918905 2
# 4 d 1.73359245 4
# 5 e 0.41027113 2
# 6 f 0.73012966 3
# 7 g -1.35901658 1
# 8 h -0.80591167 1
# 9 i 0.48966739 3
# 10 j 0.88856758 4
# 11 k 0.05146856 2
# 12 l -0.12310229 1
Is there a better (cleaner/faster/one-line) approach? Thanks!
There's a handy ntile
function in package dplyr
. It's flexible in the sense that you can very easily define the number of *tiles or "bins" you want to create.
Load the package (install first if you haven't) and add the quartile column:
library(dplyr)
temp$quartile <- ntile(temp$value, 4)
Or, if you want to use dplyr syntax:
temp <- temp %>% mutate(quartile = ntile(value, 4))
Result in both cases is:
temp
# name value quartile
#1 a -0.56047565 1
#2 b -0.23017749 2
#3 c 1.55870831 4
#4 d 0.07050839 2
#5 e 0.12928774 3
#6 f 1.71506499 4
#7 g 0.46091621 3
#8 h -1.26506123 1
#9 i -0.68685285 1
#10 j -0.44566197 2
#11 k 1.22408180 4
#12 l 0.35981383 3
Note that you don't need to create the "quartile" column in advance and use set.seed
to make the randomization reproducible:
set.seed(123)
temp <- data.frame(name=letters[1:12], value=rnorm(12))