I would like to generate N
random positive integers that sum to M
. I would like the random positive integers to be selected around a fairly normal distribution whose mean is M/N
, with a small standard deviation (is it possible to set this as a constraint?).
Finally, how would you generalize the answer to generate N random positive numbers (not just integers)?
I found other relevant questions, but couldn't determine how to apply their answers to this context: https://stats.stackexchange.com/questions/59096/generate-three-random-numbers-that-sum-to-1-in-r
Generate 3 random number that sum to 1 in R
R - random approximate normal distribution of integers with predefined total
Normalize.
rand_vect <- function(N, M, sd = 1, pos.only = TRUE) {
vec <- rnorm(N, M/N, sd)
if (abs(sum(vec)) < 0.01) vec <- vec + 1
vec <- round(vec / sum(vec) * M)
deviation <- M - sum(vec)
for (. in seq_len(abs(deviation))) {
vec[i] <- vec[i <- sample(N, 1)] + sign(deviation)
}
if (pos.only) while (any(vec < 0)) {
negs <- vec < 0
pos <- vec > 0
vec[negs][i] <- vec[negs][i <- sample(sum(negs), 1)] + 1
vec[pos][i] <- vec[pos ][i <- sample(sum(pos ), 1)] - 1
}
vec
}
For a continuous version, simply use:
rand_vect_cont <- function(N, M, sd = 1) {
vec <- rnorm(N, M/N, sd)
vec / sum(vec) * M
}
rand_vect(3, 50)
# [1] 17 16 17
rand_vect(10, 10, pos.only = FALSE)
# [1] 0 2 3 2 0 0 -1 2 1 1
rand_vect(10, 5, pos.only = TRUE)
# [1] 0 0 0 0 2 0 0 1 2 0
rand_vect_cont(3, 10)
# [1] 2.832636 3.722558 3.444806
rand_vect(10, -1, pos.only = FALSE)
# [1] -1 -1 1 -2 2 1 1 0 -1 -1