I am trying to use the optim function in R - I have no problems with this:
funk=function(param){
x=c(1,2,3,4,5)
z=c(3,4,2,2,1)
y=c(30,40,22,33,40)
a=rep(param[1],5)
b=param[2]
d=param[3]
fit=sum((y-(a+b*x+z*d))^2)
return(fit)
}
optim(par=c(1,1,1),fn=funk)
#
But as soon as I don't want to hard-code my data (x,y,z) into the function I have problems. How do I optimize a function in optim when the function input is more than just the parameters to be optimized? Ideally I would pass on value of xx, zz, yy then optimize, then move to differnt values of xx, zz, yy and optimize that case next.
xx=c(1,2,3,4,5)
zz=c(3,4,2,2,1)
yy=c(30,40,22,33,40)
funk=function(param,x,y,z){
a=rep(param[1],5)
b=param[2]
d=param[3]
fit=sum((y-(a+b*x+z*d))^2)
return(fit)
}
optim(par=c(1,1,1),fn=funk(param=c(0,0,0),x=xx,y=yy,z=zz))
Error in (function (par) : could not find function "fn"
In optim
, ...
is used to pass arguments to fn
:
xx=c(1,2,3,4,5)
zz=c(3,4,2,2,1)
yy=c(30,40,22,33,40)
funk=function(param,x,y,z){
a=rep(param[1],5)
b=param[2]
d=param[3]
fit=sum((y-(a+b*x+z*d))^2)
return(fit)
}
optim(par=c(1,1,1), fn=funk, x=xx, y=yy, z=zz)
$par
[1] -1.863076 5.722988 7.372296
$value
[1] 124.075
$counts
function gradient
180 NA
$convergence
[1] 0
$message
NULL