dplyr: How to use group_by inside a function?

Emilio Torres Manzanera picture Emilio Torres Manzanera · Feb 16, 2014 · Viewed 20.2k times · Source

I want to use use the dplyr::group_by function inside another function, but I do not know how to pass the arguments to this function.

Can someone provide a working example?

library(dplyr)
data(iris)
iris %.% group_by(Species) %.% summarise(n = n()) # 
## Source: local data frame [3 x 2]
##      Species  n
## 1  virginica 50
## 2 versicolor 50
## 3     setosa 50

mytable0 <- function(x, ...) x %.% group_by(...) %.% summarise(n = n())
mytable0(iris, "Species") # OK
## Source: local data frame [3 x 2]
##      Species  n
## 1  virginica 50
## 2 versicolor 50
## 3     setosa 50

mytable1 <- function(x, key) x %.% group_by(as.name(key)) %.% summarise(n = n())
mytable1(iris, "Species") # Wrong!
# Error: unsupported type for column 'as.name(key)' (SYMSXP)

mytable2 <- function(x, key) x %.% group_by(key) %.% summarise(n = n())
mytable2(iris, "Species") # Wrong!
# Error: index out of bounds

Answer

G. Grothendieck picture G. Grothendieck · Feb 16, 2014

For programming, group_by_ is the counterpart to group_by:

library(dplyr)

mytable <- function(x, ...) x %>% group_by_(...) %>% summarise(n = n())
mytable(iris, "Species")
# or iris %>% mytable("Species")

which gives:

     Species  n
1     setosa 50
2 versicolor 50
3  virginica 50

Update At the time this was written dplyr used %.% which is what was originally used above but now %>% is favored so have changed above to that to keep this relevant.

Update 2 regroup is now deprecated, use group_by_ instead.

Update 3 group_by_(list(...)) now becomes group_by_(...) in new version of dplyr as per Roberto's comment.

Update 4 Added minor variation suggested in comments.

Update 5: With rlang/tidyeval it is now possible to do this:

library(rlang)
mytable <- function(x, ...) {
  group_ <- syms(...)
  x %>% 
    group_by(!!!group_) %>% 
    summarise(n = n())
}
mytable(iris, "Species")

or passing Species unevaluated, i.e. no quotes around it:

library(rlang)
mytable <- function(x, ...) {
  group_ <- enquos(...)
  x %>% 
    group_by(!!!group_) %>% 
    summarise(n = n())
}
mytable(iris, Species)

Update 6: There is now a {{...}} notation that works if there is just one grouping variable:

mytable <- function(x, group) {
  x %>% 
    group_by({{group}}) %>% 
    summarise(n = n())
}
mytable(iris, Species)