Error in TukeyHSD in R

Rachel picture Rachel · Jul 8, 2013 · Viewed 15.3k times · Source

I'm working on mixed design ANOVA and would like to run TukeyHSD for its post-Hoc test.
I keep getting error, "Error in UseMethod("TukeyHSD") : no applicable method for 'TukeyHSD' applied to an object of class "c('aovlist', 'listof')".

I've seen several questions about this errors in some F&Q websites, but I still cannot find a solution.

My dataset looks like this:

    subject response  time group
1       S1  0.99676 time1 task1
2       S2  1.00220 time1 task1
3       S3  1.00420 time1 task1
4       S4  0.99467 time1 task1
5       S5  0.97906 time1 task1
6       S6  0.99162 time1 task1
7       S7  0.99771 time1 task1
8       S8  1.01780 time1 task2
9       S9  0.98682 time1 task2
10     S10  0.99124 time1 task2
11     S11  1.01670 time1 task2
12     S12  0.99769 time1 task2
13     S13  1.02090 time1 task2
14     S14  1.01740 time1 task2
15     S15  0.98851 time1 task3
16     S16  1.00690 time1 task3
17     S17  0.99717 time1 task3
18     S18  0.98945 time1 task3
19     S19  1.00270 time1 task3
20     S20  1.02690 time1 task3
21     S21  1.00050 time1 task3
22      S1  0.96908 time2 task1
23      S2  0.94024 time2 task1
......

Then, the anova result is:

anova = aov(response~(group*time)+Error(subject/time),data) summary(anova)

Error: subject
      Df  Sum Sq  Mean Sq F value Pr(>F)
group      2 0.00381 0.001907   0.701  0.509
Residuals 18 0.04896 0.002720               

Error: subject:time
       Df  Sum Sq  Mean Sq F value   Pr(>F)    
time        3 0.08205 0.027351   42.80 2.68e-14 ***
group:time  6 0.00272 0.000454    0.71    0.643    
Residuals  54 0.03451 0.000639                     

If I run TukeyHSD:

TukeyHSD(anova)
Error in UseMethod("TukeyHSD") : no applicable method for 'TukeyHSD' applied to an object of class "c('aovlist', 'listof')"

Is anything wrong with my command or dataset? I know this is a very primary question... but if anyone could help me, it would be appreciated! Thanks.

Answer

Teemu Daniel Laajala picture Teemu Daniel Laajala · Jul 8, 2013

What you're dealing with is repeated measures ANOVA, and you need to do the correct post-hoc testing for that. See below links for extra info:

Post hoc tests with ezANOVA output

Post hoc test after ANOVA with repeated measures using R

[R] Tukey HSD (or other post hoc tests) following repeated measures ANOVA

I think you're best off building a linear mixed-effects model with this specified error structure, as suggested in above links. Here is an artifical example dataset close to yours and post-hoc testing from multcomp-package for the model built using nlme-package:

set.seed(1)
dat <- cbind(expand.grid(time = paste("time", 1:3, sep=""), group = paste("task", 1:3, sep=""), subject = paste("S", 1:20, sep="")), response = rnorm(3*3*20))
# Add task1-specific effect (== task1.timeANY)
dat$response <- dat$response + as.numeric(dat$group=="task1")
# Extra effect in the last timepoint of task1 (== task1.time3)
dat$response <- dat$response + as.numeric(dat$group=="task1")*as.numeric(dat$time=="time3")
# Randomness specific for each subject
dat$response <- dat$response + rep(rnorm(20), each=3)
dat$grtim <- interaction(dat$group, dat$time)
# Interaction term specified above
#> head(dat)
#   time group subject    response       grtim
#1 time1 task1      S1 -0.85777723 task1.time1
#2 time2 task1      S1 -0.04768010 task1.time2
#3 time3 task1      S1 -0.06695203 task1.time3
#4 time1 task2      S1  2.57917637 task2.time1
#5 time2 task2      S1  1.31340334 task2.time2
#6 time3 task2      S1  0.16342719 task2.time3

# Reason why TukeyHSD-function fails:
#anova = aov(response~(group*time)+Error(subject/time),dat) 
#summary(anova)
#TukeyHSD(anova)
#Error in UseMethod("TukeyHSD") : 
#  no applicable method for 'TukeyHSD' applied to an object of class "c('aovlist', 'listof')"
#> class(anova)
#[1] "aovlist" "listof"

require(nlme)
# Below call does not work for glht, thus we created the interaction term in the data frame
#model <- lme(response ~ group*time, random = ~ 1 | subject / time, dat)
model <- lme(response ~ grtim, random = ~ 1 | subject / time, dat)
require(multcomp)
summary(glht(model, linfct=mcp(grtim="Tukey")), test = adjusted(type = "bonferroni"))

This outputs quite a long list of possible combinations, but we notice that task1, especially task1.time3, is quite different from the rest as expected:

         Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts


Fit: lme.formula(fixed = response ~ grtim, data = dat, random = ~1 | 
    subject/time)

Linear Hypotheses:
                               Estimate Std. Error z value Pr(>|z|)    
task2.time1 - task1.time1 == 0 -0.66574    0.40907  -1.627 1.000000    
task3.time1 - task1.time1 == 0 -0.21758    0.40907  -0.532 1.000000    
task1.time2 - task1.time1 == 0  0.46382    0.40907   1.134 1.000000    
task2.time2 - task1.time1 == 0 -0.63987    0.40907  -1.564 1.000000    
task3.time2 - task1.time1 == 0 -0.86698    0.40907  -2.119 1.000000    
task1.time3 - task1.time1 == 0  1.17238    0.40907   2.866 0.149667    
task2.time3 - task1.time1 == 0 -1.15241    0.40907  -2.817 0.174433    
task3.time3 - task1.time1 == 0 -0.70811    0.40907  -1.731 1.000000    
task3.time1 - task2.time1 == 0  0.44816    0.40907   1.096 1.000000    
task1.time2 - task2.time1 == 0  1.12956    0.40907   2.761 0.207272    
task2.time2 - task2.time1 == 0  0.02587    0.40907   0.063 1.000000    
task3.time2 - task2.time1 == 0 -0.20124    0.40907  -0.492 1.000000    
task1.time3 - task2.time1 == 0  1.83812    0.40907   4.493 0.000252 ***
task2.time3 - task2.time1 == 0 -0.48667    0.40907  -1.190 1.000000    
task3.time3 - task2.time1 == 0 -0.04237    0.40907  -0.104 1.000000    
task1.time2 - task3.time1 == 0  0.68140    0.40907   1.666 1.000000    
task2.time2 - task3.time1 == 0 -0.42229    0.40907  -1.032 1.000000    
task3.time2 - task3.time1 == 0 -0.64940    0.40907  -1.587 1.000000    
task1.time3 - task3.time1 == 0  1.38996    0.40907   3.398 0.024451 *  
task2.time3 - task3.time1 == 0 -0.93483    0.40907  -2.285 0.802723    
task3.time3 - task3.time1 == 0 -0.49053    0.40907  -1.199 1.000000    
task2.time2 - task1.time2 == 0 -1.10369    0.40907  -2.698 0.251098    
task3.time2 - task1.time2 == 0 -1.33080    0.40907  -3.253 0.041077 *  
task1.time3 - task1.time2 == 0  0.70856    0.40907   1.732 1.000000    
task2.time3 - task1.time2 == 0 -1.61623    0.40907  -3.951 0.002802 ** 
task3.time3 - task1.time2 == 0 -1.17193    0.40907  -2.865 0.150188    
task3.time2 - task2.time2 == 0 -0.22711    0.40907  -0.555 1.000000    
task1.time3 - task2.time2 == 0  1.81225    0.40907   4.430 0.000339 ***
task2.time3 - task2.time2 == 0 -0.51254    0.40907  -1.253 1.000000    
task3.time3 - task2.time2 == 0 -0.06824    0.40907  -0.167 1.000000    
task1.time3 - task3.time2 == 0  2.03936    0.40907   4.985 2.23e-05 ***
task2.time3 - task3.time2 == 0 -0.28543    0.40907  -0.698 1.000000    
task3.time3 - task3.time2 == 0  0.15887    0.40907   0.388 1.000000    
task2.time3 - task1.time3 == 0 -2.32479    0.40907  -5.683 4.76e-07 ***
task3.time3 - task1.time3 == 0 -1.88049    0.40907  -4.597 0.000154 ***
task3.time3 - task2.time3 == 0  0.44430    0.40907   1.086 1.000000    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- bonferroni method)