I have data in R that looks like this:
Cnty Yr Plt Spp DBH Ht Age
1 185 1999 20001 Bitternut 8.0 54 47
2 185 1999 20001 Bitternut 7.2 55 50
3 31 1999 20001 Pignut 7.4 71 60
4 31 1999 20001 Pignut 11.4 85 114
5 189 1999 20001 WO 14.5 80 82
6 189 1999 20001 WO 12.1 72 79
I would like to know the quantity of unique species (Spp) in each county (Cnty). "unique(dfname$Spp)" gives me a total count of unique species in the data frame, but I would like it by county.
Any help is appreciated! Sorry for the weird formatting, this is my first ever question on SO.
Thanks.
I've tried to make your sample data a little bit more interesting. Your sample data presently has just one unique "Spp" per "Cnty".
set.seed(1)
mydf <- data.frame(
Cnty = rep(c("185", "31", "189"), times = c(5, 3, 2)),
Yr = c(rep(c("1999", "2000"), times = c(3, 2)),
"1999", "1999", "2000", "2000", "2000"),
Plt = "20001",
Spp = sample(c("Bitternut", "Pignut", "WO"), 10, replace = TRUE),
DBH = runif(10, 0, 15)
)
mydf
# Cnty Yr Plt Spp DBH
# 1 185 1999 20001 Bitternut 3.089619
# 2 185 1999 20001 Pignut 2.648351
# 3 185 1999 20001 Pignut 10.305343
# 4 185 2000 20001 WO 5.761556
# 5 185 2000 20001 Bitternut 11.547621
# 6 31 1999 20001 WO 7.465489
# 7 31 1999 20001 WO 10.764278
# 8 31 2000 20001 Pignut 14.878591
# 9 189 2000 20001 Pignut 5.700528
# 10 189 2000 20001 Bitternut 11.661678
Next, as suggested, tapply
is a good candidate here. Combine unique
and length
to get the data you are looking for.
with(mydf, tapply(Spp, Cnty, FUN = function(x) length(unique(x))))
# 185 189 31
# 3 2 2
with(mydf, tapply(Spp, list(Cnty, Yr), FUN = function(x) length(unique(x))))
# 1999 2000
# 185 2 2
# 189 NA 2
# 31 1 1
If you're interested in simple tabulation (not of unique values), then you can explore table
and ftable
:
with(mydf, table(Spp, Cnty))
# Cnty
# Spp 185 189 31
# Bitternut 2 1 0
# Pignut 2 1 1
# WO 1 0 2
ftable(mydf, row.vars="Spp", col.vars=c("Cnty", "Yr"))
# Cnty 185 189 31
# Yr 1999 2000 1999 2000 1999 2000
# Spp
# Bitternut 1 1 0 1 0 0
# Pignut 2 0 0 1 0 1
# WO 0 1 0 0 2 0