concatenating/ merging time series (in R)

amit picture amit · Mar 17, 2013 · Viewed 12.8k times · Source

I have to xts/zoo objects. each has measures of different variables over a different time span. I want to create a single time series comprising all measures at all times, with NAs for missing dates/variable combinations. how do I do that? artificial example:

library(xts)
x<-cbind(a=1:3,b=3:1)
rownames(x) = as.character(Sys.Date()-1:3)

y<-cbind(a=5:7,c=3:1)
rownames(y) = as.character(Sys.Date()-5:7)

xs=as.xts(x)
ys=as.xts(y)

#now what?

#desired outcome looks like:
            a  b   c
2013-03-10  7 NA   1
2013-03-11  6 NA   2
2013-03-12  5 NA   3
2013-03-14  3  1  NA
2013-03-15  2  2  NA
2013-03-16  1  3  NA

# regular merge looks like that (adding an a.1 variable)
merge(xs,ys)
            a  b a.1  c
2013-03-10 NA NA   7  1
2013-03-11 NA NA   6  2
2013-03-12 NA NA   5  3
2013-03-14  3  1  NA NA
2013-03-15  2  2  NA NA
2013-03-16  1  3  NA NA

# simple concatenation ignores variable names and looks like that
c(xs,ys)
           a b
2013-03-10 7 1
2013-03-11 6 2
2013-03-12 5 3
2013-03-14 3 1
2013-03-15 2 2
2013-03-16 1 3

# so what should I do?

Answer

agstudy picture agstudy · Mar 17, 2013

This is not a general solution. But works for this example:

cbind(rbind(xs[,1],ys[,1]), cbind(xs[,-1],ys[,-1]))
           a  b  c
2013-03-10 7 NA  1
2013-03-11 6 NA  2
2013-03-12 5 NA  3
2013-03-14 3  1 NA
2013-03-15 2  2 NA
2013-03-16 1  3 NA

Just remind that cbind.xts is just merge.xts. S you can get the same result using merge

merge(rbind(xs[,1],ys[,1]), merge(xs[,-1],ys[,-1]))
           a  b  c
2013-03-10 7 NA  1
2013-03-11 6 NA  2
2013-03-12 5 NA  3
2013-03-14 3  1 NA
2013-03-15 2  2 NA
2013-03-16 1  3 NA

The problem with this solution is that if ys and xs have some dates incommon, you will have duplicated index in your final xts object.For example, if we replace y :

rownames(y) = as.character(Sys.Date()-3:5)

You get , a duplicated index for 2013-03-14, So im anot sure that it s a valid xts object.

merge(rbind(xs[,1],ys[,1]), merge(xs[,-1],ys[,-1]))
           a  b  c
2013-03-12 7 NA  1
2013-03-13 6 NA  2
2013-03-14 3  1  3
2013-03-14 5 NA NA
2013-03-15 2  2 NA
2013-03-16 1  3 NA

EDIT a generalization of the solution:

inter <- intersect(names(ys), names(xs))
diffx <- setdiff(names(xs),inter)
diffy <- setdiff(names(ys),inter)

merge(rbind(xs[,inter],ys[,inter]), merge(xs[,diffx],ys[,diffy]))


           a  b  c
2013-03-10 7 NA  1
2013-03-11 6 NA  2
2013-03-12 5 NA  3
2013-03-14 3  1 NA
2013-03-15 2  2 NA
2013-03-16 1  3 NA