I wish to obtain weighted means by group for each of several (actually about 60) columns. This question is very similar to: repeatedly applying ave for computing group means in a data frame just asked.
I have come up with two ways to obtain the weighted means so far:
sapply
statement for each columnsapply
statement inside a for-loop
However, I feel there must be a way to insert an apply
statement inside the sapply
statement or vice versa, thereby eliminating the for-loop
. I have tried numerous permutations without success. I also looked at the sweep
function.
Here is the code I have so far.
df <- read.table(text= "
region state county weights y1980 y1990 y2000
1 1 1 10 100 200 50
1 1 2 5 50 100 200
1 1 3 120 1000 500 250
1 1 4 2 25 100 400
1 1 4 15 125 150 200
2 2 1 1 10 50 150
2 2 2 10 10 10 200
2 2 2 40 40 100 30
2 2 3 20 100 100 10
", header=TRUE, na.strings=NA)
# add a group variable to the data set
group <- paste(df$region, '_', df$state, '_', df$county, sep = "")
df <- data.frame(group, df)
# obtain weighted averages for y1980, y1990 and y2000
# one column at a time using one sapply per column
sapply(split(df, df$group), function(x) weighted.mean(x$y1980, w = x$weights))
sapply(split(df, df$group), function(x) weighted.mean(x$y1990, w = x$weights))
sapply(split(df, df$group), function(x) weighted.mean(x$y2000, w = x$weights))
# obtain weighted average for y1980, y1990 and y2000
# one column at a time using a for-loop
y <- matrix(NA, nrow=7, ncol=3)
group.b <- df[!duplicated(df$group), 1]
for(i in 6:8) {
y[,(i-5)] <- sapply(split(df[,c(1:5,i)], df$group), function(x) weighted.mean(x[,6], w = x$weights))
}
# add weighted averages to the original data set
y2 <- data.frame(group.b, y)
colnames(y2) <- c('group','ave1980','ave1990','ave2000')
y2
y3 <- merge(df, y2, by=c('group'), all = TRUE)
y3
Sorry for all of my questions lately, and thank you for any advice.
EDITED to show y3
group region state county weights y1980 y1990 y2000 ave1980 ave1990 ave2000
1 1_1_1 1 1 1 10 100 200 50 100.0000 200.0000 50.0000
2 1_1_2 1 1 2 5 50 100 200 50.0000 100.0000 200.0000
3 1_1_3 1 1 3 120 1000 500 250 1000.0000 500.0000 250.0000
4 1_1_4 1 1 4 2 25 100 400 113.2353 144.1176 223.5294
5 1_1_4 1 1 4 15 125 150 200 113.2353 144.1176 223.5294
6 2_2_1 2 2 1 1 10 50 150 10.0000 50.0000 150.0000
7 2_2_2 2 2 2 10 10 10 200 34.0000 82.0000 64.0000
8 2_2_2 2 2 2 40 40 100 30 34.0000 82.0000 64.0000
9 2_2_3 2 2 3 20 100 100 10 100.0000 100.0000 10.0000
I suggest to use package data.table:
library(data.table)
dt <- as.data.table(df)
dt2 <- dt[,lapply(.SD,weighted.mean,w=weights),by=list(region,state,county)]
print(dt2)
region state county weights y1980 y1990 y2000
1: 1 1 1 10.00000 100.0000 200.0000 50.0000
2: 1 1 2 5.00000 50.0000 100.0000 200.0000
3: 1 1 3 120.00000 1000.0000 500.0000 250.0000
4: 1 1 4 13.47059 113.2353 144.1176 223.5294
5: 2 2 1 1.00000 10.0000 50.0000 150.0000
6: 2 2 2 34.00000 34.0000 82.0000 64.0000
7: 2 2 3 20.00000 100.0000 100.0000 10.0000
If you want you can merge
with the original data.table afterwards:
merge(dt,dt2,by=c("region","state","county"))
region state county weights.x y1980.x y1990.x y2000.x weights.y y1980.y y1990.y y2000.y
1: 1 1 1 10 100 200 50 10.00000 100.0000 200.0000 50.0000
2: 1 1 2 5 50 100 200 5.00000 50.0000 100.0000 200.0000
3: 1 1 3 120 1000 500 250 120.00000 1000.0000 500.0000 250.0000
4: 1 1 4 2 25 100 400 13.47059 113.2353 144.1176 223.5294
5: 1 1 4 15 125 150 200 13.47059 113.2353 144.1176 223.5294
6: 2 2 1 1 10 50 150 1.00000 10.0000 50.0000 150.0000
7: 2 2 2 10 10 10 200 34.00000 34.0000 82.0000 64.0000
8: 2 2 2 40 40 100 30 34.00000 34.0000 82.0000 64.0000
9: 2 2 3 20 100 100 10 20.00000 100.0000 100.0000 10.0000