If I have a set of points in R that are linear I can do the following to plot the points, fit a line to them, then display the line:
x=c(61,610,1037,2074,3050,4087,5002,6100,7015)
y=c(0.401244, 0.844381, 1.18922, 1.93864, 2.76673, 3.52449, 4.21855, 5.04368, 5.80071)
plot(x,y)
Estimate = lm(y ~ x)
abline(Estimate)
Now, if I have a set of points that looks like a logarithmic curve fit is more appropriate such as the following:
x=c(61,610,1037,2074,3050,4087,5002,6100,7015)
y=c(0.974206,1.16716,1.19879,1.28192,1.30739,1.32019,1.35494,1.36941,1.37505)
I know I can get the standard regression fit against the log of the x values with the following:
logEstimate = lm(y ~ log(x))
But then how do I transform that logEstimate back to normal scaling and plot the curve against my linear curve from earlier?
Hmmm, I'm not quite sure what you mean by "plot the curve against my linear curve from earlier".
d <- data.frame(x,y) ## need to use data in a data.frame for predict()
logEstimate <- lm(y~log(x),data=d)
Here are three ways to get predicted values:
(1) Use predict
:
plot(x,y)
xvec <- seq(0,7000,length=101)
logpred <- predict(logEstimate,newdata=data.frame(x=xvec))
lines(xvec,logpred)
(2) Extract the numeric coefficient values:
coef(logEstimate)
## (Intercept) log(x)
## 0.6183839 0.0856404
curve(0.61838+0.08564*log(x),add=TRUE,col=2)
(3) Use with()
magic (you need back-quotes around the parameter estimate names because they contain parentheses)
with(as.list(coef(logEstimate)),
curve(`(Intercept)`+`log(x)`*log(x),add=TRUE,col=4))
Maybe what you want is
est1 <- predict(lm(y~x,data=d),newdata=data.frame(x=xvec))
plot(est1,logpred)
... although I'm not sure why ...