Drawing rectangle between two points with arbitrary width

AaronDS picture AaronDS · Oct 21, 2011 · Viewed 8.9k times · Source

I'm trying to draw a line between two (2D) points when the user swipes their finger across a touch screen. To do this, I plan on drawing a rectangle on every touch update between the X and Y of the previous touch update and the X and Y of the latest touch update. This should create a continuous and solid line as the user swipes their finger across the screen. However, I would also like this line to have an arbitrary width. My question is, how should I go about calculating the coordinates I need for each rectangle (x1, y1, x2, y2)?

--

Also: if anyone has any information on how I could then go about applying anti-aliasing to this line it'd be a massive help.

Answer

Kromster picture Kromster · Oct 21, 2011

Calculate a vector between start and end points

V.X := Point2.X - Point1.X;
V.Y := Point2.Y - Point1.Y;

Then calculate a perpendicular to it (just swap X and Y coordinates)

P.X := V.Y; //Use separate variable otherwise you overwrite X coordinate here
P.Y := -V.X; //Flip the sign of either the X or Y (edit by adam.wulf)

Normalize that perpendicular

Length = sqrt(P.X * P.X + P.Y * P.Y); //Thats length of perpendicular
N.X = P.X / Length;
N.Y = P.Y / Length; //Now N is normalized perpendicular

Calculate 4 points that form a rectangle by adding normalized perpendicular and multiplying it by half of the desired width

R1.X := Point1.X + N.X * Width / 2;
R1.Y := Point1.Y + N.Y * Width / 2;
R2.X := Point1.X - N.X * Width / 2;
R2.Y := Point1.Y - N.Y * Width / 2;
R3.X := Point2.X + N.X * Width / 2;
R3.Y := Point2.Y + N.Y * Width / 2;
R4.X := Point2.X - N.X * Width / 2;
R4.Y := Point2.Y - N.Y * Width / 2;

Draw rectangle using these 4 points.

Here's the picture:

Drawing rectangle between two points

EDIT: To answer the comments: If X and Y are the same then the line is exactly diagonal and perpendicular to a diagonal is a diagonal. Normalization is a method of making a length to equal to 1, so that the width of your line in this example will not depend on perpendiculars length (which is equal to lines length here).