I need a fast way to count the number of bits in an integer in python. My current solution is
bin(n).count("1")
but I am wondering if there is any faster way of doing this?
PS: (i am representing a big 2D binary array as a single list of numbers and doing bitwise operations, and that brings the time down from hours to minutes. and now I would like to get rid of those extra minutes.
Edit: 1. it has to be in python 2.7 or 2.6
and optimizing for small numbers does not matter that much since that would not be a clear bottleneck, but I do have numbers with 10 000 + bits at some places
for example this is a 2000 bit case:
12448057941136394342297748548545082997815840357634948550739612798732309975923280685245876950055614362283769710705811182976142803324242407017104841062064840113262840137625582646683068904149296501029754654149991842951570880471230098259905004533869130509989042199261339990315125973721454059973605358766253998615919997174542922163484086066438120268185904663422979603026066685824578356173882166747093246377302371176167843247359636030248569148734824287739046916641832890744168385253915508446422276378715722482359321205673933317512861336054835392844676749610712462818600179225635467147870208L
For arbitrary-length integers, bin(n).count("1")
is the fastest I could find in pure Python.
I tried adapting Óscar's and Adam's solutions to process the integer in 64-bit and 32-bit chunks, respectively. Both were at least ten times slower than bin(n).count("1")
(the 32-bit version took about half again as much time).
On the other hand, gmpy popcount()
took about 1/20th of the time of bin(n).count("1")
. So if you can install gmpy, use that.
To answer a question in the comments, for bytes I'd use a lookup table. You can generate it at runtime:
counts = bytes(bin(x).count("1") for x in range(256)) # py2: use bytearray
Or just define it literally:
counts = (b'\x00\x01\x01\x02\x01\x02\x02\x03\x01\x02\x02\x03\x02\x03\x03\x04'
b'\x01\x02\x02\x03\x02\x03\x03\x04\x02\x03\x03\x04\x03\x04\x04\x05'
b'\x01\x02\x02\x03\x02\x03\x03\x04\x02\x03\x03\x04\x03\x04\x04\x05'
b'\x02\x03\x03\x04\x03\x04\x04\x05\x03\x04\x04\x05\x04\x05\x05\x06'
b'\x01\x02\x02\x03\x02\x03\x03\x04\x02\x03\x03\x04\x03\x04\x04\x05'
b'\x02\x03\x03\x04\x03\x04\x04\x05\x03\x04\x04\x05\x04\x05\x05\x06'
b'\x02\x03\x03\x04\x03\x04\x04\x05\x03\x04\x04\x05\x04\x05\x05\x06'
b'\x03\x04\x04\x05\x04\x05\x05\x06\x04\x05\x05\x06\x05\x06\x06\x07'
b'\x01\x02\x02\x03\x02\x03\x03\x04\x02\x03\x03\x04\x03\x04\x04\x05'
b'\x02\x03\x03\x04\x03\x04\x04\x05\x03\x04\x04\x05\x04\x05\x05\x06'
b'\x02\x03\x03\x04\x03\x04\x04\x05\x03\x04\x04\x05\x04\x05\x05\x06'
b'\x03\x04\x04\x05\x04\x05\x05\x06\x04\x05\x05\x06\x05\x06\x06\x07'
b'\x02\x03\x03\x04\x03\x04\x04\x05\x03\x04\x04\x05\x04\x05\x05\x06'
b'\x03\x04\x04\x05\x04\x05\x05\x06\x04\x05\x05\x06\x05\x06\x06\x07'
b'\x03\x04\x04\x05\x04\x05\x05\x06\x04\x05\x05\x06\x05\x06\x06\x07'
b'\x04\x05\x05\x06\x05\x06\x06\x07\x05\x06\x06\x07\x06\x07\x07\x08')
Then it's counts[x]
to get the number of 1 bits in x
where 0 ≤ x ≤ 255.