I'm trying to fit a 2D Gaussian to an image. Noise is very low, so my attempt was to rotate the image such that the two principal axes do not co-vary, figure out the maximum and just compute the standard deviation in both dimensions. Weapon of choice is python.
However I got stuck at finding the eigenvectors of the image - numpy.linalg.py
assumes discrete data points. I thought about taking this image to be a probability distribution, sampling a few thousand points and then computing the eigenvectors from that distribution, but I'm sure there must be a way of finding the eigenvectors (ie., semi-major and semi-minor axes of the gaussian ellipse) directly from that image. Any ideas?
Thanks a lot :)
Just a quick note, there are several tools to fit a gaussian to an image. The only thing I can think of off the top of my head is scikits.learn, which isn't completely image-oriented, but I know there are others.
To calculate the eigenvectors of the covariance matrix exactly as you had in mind is very computationally expensive. You have to associate each pixel (or a large-ish random sample) of image with an x,y point.
Basically, you do something like:
import numpy as np
# grid is your image data, here...
grid = np.random.random((10,10))
nrows, ncols = grid.shape
i,j = np.mgrid[:nrows, :ncols]
coords = np.vstack((i.reshape(-1), j.reshape(-1), grid.reshape(-1))).T
cov = np.cov(coords)
eigvals, eigvecs = np.linalg.eigh(cov)
You can instead make use of the fact that it's a regularly-sampled image and compute it's moments (or "intertial axes") instead. This will be considerably faster for large images.
As a quick example, (I'm using a part of one of my previous answers, in case you find it useful...)
import numpy as np
import matplotlib.pyplot as plt
def main():
data = generate_data()
xbar, ybar, cov = intertial_axis(data)
fig, ax = plt.subplots()
ax.imshow(data)
plot_bars(xbar, ybar, cov, ax)
plt.show()
def generate_data():
data = np.zeros((200, 200), dtype=np.float)
cov = np.array([[200, 100], [100, 200]])
ij = np.random.multivariate_normal((100,100), cov, int(1e5))
for i,j in ij:
data[int(i), int(j)] += 1
return data
def raw_moment(data, iord, jord):
nrows, ncols = data.shape
y, x = np.mgrid[:nrows, :ncols]
data = data * x**iord * y**jord
return data.sum()
def intertial_axis(data):
"""Calculate the x-mean, y-mean, and cov matrix of an image."""
data_sum = data.sum()
m10 = raw_moment(data, 1, 0)
m01 = raw_moment(data, 0, 1)
x_bar = m10 / data_sum
y_bar = m01 / data_sum
u11 = (raw_moment(data, 1, 1) - x_bar * m01) / data_sum
u20 = (raw_moment(data, 2, 0) - x_bar * m10) / data_sum
u02 = (raw_moment(data, 0, 2) - y_bar * m01) / data_sum
cov = np.array([[u20, u11], [u11, u02]])
return x_bar, y_bar, cov
def plot_bars(x_bar, y_bar, cov, ax):
"""Plot bars with a length of 2 stddev along the principal axes."""
def make_lines(eigvals, eigvecs, mean, i):
"""Make lines a length of 2 stddev."""
std = np.sqrt(eigvals[i])
vec = 2 * std * eigvecs[:,i] / np.hypot(*eigvecs[:,i])
x, y = np.vstack((mean-vec, mean, mean+vec)).T
return x, y
mean = np.array([x_bar, y_bar])
eigvals, eigvecs = np.linalg.eigh(cov)
ax.plot(*make_lines(eigvals, eigvecs, mean, 0), marker='o', color='white')
ax.plot(*make_lines(eigvals, eigvecs, mean, -1), marker='o', color='red')
ax.axis('image')
if __name__ == '__main__':
main()