Multiprocessing - Pipe vs Queue

Jonathan picture Jonathan · Dec 11, 2011 · Viewed 74.6k times · Source

What are the fundamental differences between queues and pipes in Python's multiprocessing package?

In what scenarios should one choose one over the other? When is it advantageous to use Pipe()? When is it advantageous to use Queue()?

Answer

Mike Pennington picture Mike Pennington · Dec 11, 2011
  • A Pipe() can only have two endpoints.

  • A Queue() can have multiple producers and consumers.

When to use them

If you need more than two points to communicate, use a Queue().

If you need absolute performance, a Pipe() is much faster because Queue() is built on top of Pipe().

Performance Benchmarking

Let's assume you want to spawn two processes and send messages between them as quickly as possible. These are the timing results of a drag race between similar tests using Pipe() and Queue()... This is on a ThinkpadT61 running Ubuntu 11.10, and Python 2.7.2.

FYI, I threw in results for JoinableQueue() as a bonus; JoinableQueue() accounts for tasks when queue.task_done() is called (it doesn't even know about the specific task, it just counts unfinished tasks in the queue), so that queue.join() knows the work is finished.

The code for each at bottom of this answer...

mpenning@mpenning-T61:~$ python multi_pipe.py 
Sending 10000 numbers to Pipe() took 0.0369849205017 seconds
Sending 100000 numbers to Pipe() took 0.328398942947 seconds
Sending 1000000 numbers to Pipe() took 3.17266988754 seconds
mpenning@mpenning-T61:~$ python multi_queue.py 
Sending 10000 numbers to Queue() took 0.105256080627 seconds
Sending 100000 numbers to Queue() took 0.980564117432 seconds
Sending 1000000 numbers to Queue() took 10.1611330509 seconds
mpnening@mpenning-T61:~$ python multi_joinablequeue.py 
Sending 10000 numbers to JoinableQueue() took 0.172781944275 seconds
Sending 100000 numbers to JoinableQueue() took 1.5714070797 seconds
Sending 1000000 numbers to JoinableQueue() took 15.8527247906 seconds
mpenning@mpenning-T61:~$

In summary Pipe() is about three times faster than a Queue(). Don't even think about the JoinableQueue() unless you really must have the benefits.

BONUS MATERIAL 2

Multiprocessing introduces subtle changes in information flow that make debugging hard unless you know some shortcuts. For instance, you might have a script that works fine when indexing through a dictionary in under many conditions, but infrequently fails with certain inputs.

Normally we get clues to the failure when the entire python process crashes; however, you don't get unsolicited crash tracebacks printed to the console if the multiprocessing function crashes. Tracking down unknown multiprocessing crashes is hard without a clue to what crashed the process.

The simplest way I have found to track down multiprocessing crash informaiton is to wrap the entire multiprocessing function in a try / except and use traceback.print_exc():

import traceback
def run(self, args):
    try:
        # Insert stuff to be multiprocessed here
        return args[0]['that']
    except:
        print "FATAL: reader({0}) exited while multiprocessing".format(args) 
        traceback.print_exc()

Now, when you find a crash you see something like:

FATAL: reader([{'crash': 'this'}]) exited while multiprocessing
Traceback (most recent call last):
  File "foo.py", line 19, in __init__
    self.run(args)
  File "foo.py", line 46, in run
    KeyError: 'that'

Source Code:


"""
multi_pipe.py
"""
from multiprocessing import Process, Pipe
import time

def reader_proc(pipe):
    ## Read from the pipe; this will be spawned as a separate Process
    p_output, p_input = pipe
    p_input.close()    # We are only reading
    while True:
        msg = p_output.recv()    # Read from the output pipe and do nothing
        if msg=='DONE':
            break

def writer(count, p_input):
    for ii in xrange(0, count):
        p_input.send(ii)             # Write 'count' numbers into the input pipe
    p_input.send('DONE')

if __name__=='__main__':
    for count in [10**4, 10**5, 10**6]:
        # Pipes are unidirectional with two endpoints:  p_input ------> p_output
        p_output, p_input = Pipe()  # writer() writes to p_input from _this_ process
        reader_p = Process(target=reader_proc, args=((p_output, p_input),))
        reader_p.daemon = True
        reader_p.start()     # Launch the reader process

        p_output.close()       # We no longer need this part of the Pipe()
        _start = time.time()
        writer(count, p_input) # Send a lot of stuff to reader_proc()
        p_input.close()
        reader_p.join()
        print("Sending {0} numbers to Pipe() took {1} seconds".format(count,
            (time.time() - _start)))

"""
multi_queue.py
"""

from multiprocessing import Process, Queue
import time
import sys

def reader_proc(queue):
    ## Read from the queue; this will be spawned as a separate Process
    while True:
        msg = queue.get()         # Read from the queue and do nothing
        if (msg == 'DONE'):
            break

def writer(count, queue):
    ## Write to the queue
    for ii in range(0, count):
        queue.put(ii)             # Write 'count' numbers into the queue
    queue.put('DONE')

if __name__=='__main__':
    pqueue = Queue() # writer() writes to pqueue from _this_ process
    for count in [10**4, 10**5, 10**6]:             
        ### reader_proc() reads from pqueue as a separate process
        reader_p = Process(target=reader_proc, args=((pqueue),))
        reader_p.daemon = True
        reader_p.start()        # Launch reader_proc() as a separate python process

        _start = time.time()
        writer(count, pqueue)    # Send a lot of stuff to reader()
        reader_p.join()         # Wait for the reader to finish
        print("Sending {0} numbers to Queue() took {1} seconds".format(count, 
            (time.time() - _start)))

"""
multi_joinablequeue.py
"""
from multiprocessing import Process, JoinableQueue
import time

def reader_proc(queue):
    ## Read from the queue; this will be spawned as a separate Process
    while True:
        msg = queue.get()         # Read from the queue and do nothing
        queue.task_done()

def writer(count, queue):
    for ii in xrange(0, count):
        queue.put(ii)             # Write 'count' numbers into the queue

if __name__=='__main__':
    for count in [10**4, 10**5, 10**6]:
        jqueue = JoinableQueue() # writer() writes to jqueue from _this_ process
        # reader_proc() reads from jqueue as a different process...
        reader_p = Process(target=reader_proc, args=((jqueue),))
        reader_p.daemon = True
        reader_p.start()     # Launch the reader process
        _start = time.time()
        writer(count, jqueue) # Send a lot of stuff to reader_proc() (in different process)
        jqueue.join()         # Wait for the reader to finish
        print("Sending {0} numbers to JoinableQueue() took {1} seconds".format(count, 
            (time.time() - _start)))