Similar to another post I made, this answers that post and creates a new question.
Recap: I need to update every record in a spatial database in which I have a data set of points that overlay data set of polygons. For each point feature I want to assign a key to relate it to the polygon feature that it lies within. So if my point 'New York City' lies within polygon USA and for the USA polygon 'GID = 1' I will assign 'gid_fkey = 1' for my point New York City.
Okay so this has been achieved using multiprocessing. I have noticed a 150% increase in speed using this so it does work. But I think there is a bunch of unecessary overhead as one DB connection is required for each record.
So here is the code:
import multiprocessing, time, psycopg2
class Consumer(multiprocessing.Process):
def __init__(self, task_queue, result_queue):
multiprocessing.Process.__init__(self)
self.task_queue = task_queue
self.result_queue = result_queue
def run(self):
proc_name = self.name
while True:
next_task = self.task_queue.get()
if next_task is None:
print 'Tasks Complete'
self.task_queue.task_done()
break
answer = next_task()
self.task_queue.task_done()
self.result_queue.put(answer)
return
class Task(object):
def __init__(self, a):
self.a = a
def __call__(self):
pyConn = psycopg2.connect("dbname='geobase_1' host = 'localhost'")
pyConn.set_isolation_level(0)
pyCursor1 = pyConn.cursor()
procQuery = 'UPDATE city SET gid_fkey = gid FROM country WHERE ST_within((SELECT the_geom FROM city WHERE city_id = %s), country.the_geom) AND city_id = %s' % (self.a, self.a)
pyCursor1.execute(procQuery)
print 'What is self?'
print self.a
return self.a
def __str__(self):
return 'ARC'
def run(self):
print 'IN'
if __name__ == '__main__':
tasks = multiprocessing.JoinableQueue()
results = multiprocessing.Queue()
num_consumers = multiprocessing.cpu_count() * 2
consumers = [Consumer(tasks, results) for i in xrange(num_consumers)]
for w in consumers:
w.start()
pyConnX = psycopg2.connect("dbname='geobase_1' host = 'localhost'")
pyConnX.set_isolation_level(0)
pyCursorX = pyConnX.cursor()
pyCursorX.execute('SELECT count(*) FROM cities WHERE gid_fkey IS NULL')
temp = pyCursorX.fetchall()
num_job = temp[0]
num_jobs = num_job[0]
pyCursorX.execute('SELECT city_id FROM city WHERE gid_fkey IS NULL')
cityIdListTuple = pyCursorX.fetchall()
cityIdListList = []
for x in cityIdListTuple:
cityIdList.append(x[0])
for i in xrange(num_jobs):
tasks.put(Task(cityIdList[i - 1]))
for i in xrange(num_consumers):
tasks.put(None)
while num_jobs:
result = results.get()
print result
num_jobs -= 1
It looks to be between 0.3 and 1.5 seconds per connection as I have measure it with 'time' module.
Is there a way to make a DB connection per process and then just use the city_id info as a variable that I can feed into a query for the cursor in this open? This way I make say four processes each with a DB connection and then drop me city_id in somehow to process.
Try to isolate the creation of your connection in the Consumer constructor, then give it to the executed Task :
import multiprocessing, time, psycopg2
class Consumer(multiprocessing.Process):
def __init__(self, task_queue, result_queue):
multiprocessing.Process.__init__(self)
self.task_queue = task_queue
self.result_queue = result_queue
self.pyConn = psycopg2.connect("dbname='geobase_1' host = 'localhost'")
self.pyConn.set_isolation_level(0)
def run(self):
proc_name = self.name
while True:
next_task = self.task_queue.get()
if next_task is None:
print 'Tasks Complete'
self.task_queue.task_done()
break
answer = next_task(connection=self.pyConn)
self.task_queue.task_done()
self.result_queue.put(answer)
return
class Task(object):
def __init__(self, a):
self.a = a
def __call__(self, connection=None):
pyConn = connection
pyCursor1 = pyConn.cursor()
procQuery = 'UPDATE city SET gid_fkey = gid FROM country WHERE ST_within((SELECT the_geom FROM city WHERE city_id = %s), country.the_geom) AND city_id = %s' % (self.a, self.a)
pyCursor1.execute(procQuery)
print 'What is self?'
print self.a
return self.a
def __str__(self):
return 'ARC'
def run(self):
print 'IN'