I would like to scale an array of shape (h, w) by a factor of n, resulting in an array of shape (h*n, w*n), with the.
Say that I have a 2x2 array:
array([[1, 1],
[0, 1]])
I would like to scale the array to become 4x4:
array([[1, 1, 1, 1],
[1, 1, 1, 1],
[0, 0, 1, 1],
[0, 0, 1, 1]])
That is, the value of each cell in the original array is copied into 4 corresponding cells in the resulting array. Assuming arbitrary array size and scaling factor, what's the most efficient way to do this?
You should use the Kronecker product, numpy.kron:
Computes the Kronecker product, a composite array made of blocks of the second array scaled by the first
import numpy as np
a = np.array([[1, 1],
[0, 1]])
n = 2
np.kron(a, np.ones((n,n)))
which gives what you want:
array([[1, 1, 1, 1],
[1, 1, 1, 1],
[0, 0, 1, 1],
[0, 0, 1, 1]])