Changing image hue with Python PIL

zopieux picture zopieux · Sep 1, 2011 · Viewed 21.7k times · Source

Using Python PIL, I'm trying to adjust the hue of a given image.

I'm not very comfortable with the jargon of graphics, so what I mean by “adjusting hue” is doing the Photoshop operation called “Hue/saturation”: this is to change the color of the image uniformly as shown below:

  • Original: Original
  • With hue adjusted to +180 (red): hue: -180
  • With hue adjusted to -78 (green): hue: -78

FYI, Photoshop uses a scale of -180 to +180 for this hue setting (where -180 equals +180), that may represents the HSL hue scale (expressed in 0-360 degree).

What I'm looking for is a function that, given an PIL image and a float hue within [0, 1] (or int within [0, 360], it doesn't matter), returns the image with its hue shifted by hue as in the example above.

What I've done so far is ridiculous and obviously doesn't give the desired result. It just half-blend my original image with a color-filled layer.

import Image

im = Image.open('tweeter.png')
layer = Image.new('RGB', im.size, 'red') # "hue" selection is done by choosing a color...
output = Image.blend(im, layer, 0.5)
output.save('output.png', 'PNG')

(Please-don't-laugh-at-) result: output.png

Thanks in advance!


Solution: here is the unutbu code updated so it fits exactly what I've described.

import Image
import numpy as np
import colorsys

rgb_to_hsv = np.vectorize(colorsys.rgb_to_hsv)
hsv_to_rgb = np.vectorize(colorsys.hsv_to_rgb)

def shift_hue(arr, hout):
    r, g, b, a = np.rollaxis(arr, axis=-1)
    h, s, v = rgb_to_hsv(r, g, b)
    h = hout
    r, g, b = hsv_to_rgb(h, s, v)
    arr = np.dstack((r, g, b, a))
    return arr

def colorize(image, hue):
    """
    Colorize PIL image `original` with the given
    `hue` (hue within 0-360); returns another PIL image.
    """
    img = image.convert('RGBA')
    arr = np.array(np.asarray(img).astype('float'))
    new_img = Image.fromarray(shift_hue(arr, hue/360.).astype('uint8'), 'RGBA')

    return new_img

Answer

unutbu picture unutbu · Sep 1, 2011

There is Python code to convert RGB to HSV (and vice versa) in the colorsys module in the standard library. My first attempt used

rgb_to_hsv=np.vectorize(colorsys.rgb_to_hsv)
hsv_to_rgb=np.vectorize(colorsys.hsv_to_rgb)

to vectorize those functions. Unfortunately, using np.vectorize results in rather slow code.

I was able to obtain roughly a 5 times speed up by translating colorsys.rgb_to_hsv and colorsys.hsv_to_rgb into native numpy operations.

import Image
import numpy as np

def rgb_to_hsv(rgb):
    # Translated from source of colorsys.rgb_to_hsv
    # r,g,b should be a numpy arrays with values between 0 and 255
    # rgb_to_hsv returns an array of floats between 0.0 and 1.0.
    rgb = rgb.astype('float')
    hsv = np.zeros_like(rgb)
    # in case an RGBA array was passed, just copy the A channel
    hsv[..., 3:] = rgb[..., 3:]
    r, g, b = rgb[..., 0], rgb[..., 1], rgb[..., 2]
    maxc = np.max(rgb[..., :3], axis=-1)
    minc = np.min(rgb[..., :3], axis=-1)
    hsv[..., 2] = maxc
    mask = maxc != minc
    hsv[mask, 1] = (maxc - minc)[mask] / maxc[mask]
    rc = np.zeros_like(r)
    gc = np.zeros_like(g)
    bc = np.zeros_like(b)
    rc[mask] = (maxc - r)[mask] / (maxc - minc)[mask]
    gc[mask] = (maxc - g)[mask] / (maxc - minc)[mask]
    bc[mask] = (maxc - b)[mask] / (maxc - minc)[mask]
    hsv[..., 0] = np.select(
        [r == maxc, g == maxc], [bc - gc, 2.0 + rc - bc], default=4.0 + gc - rc)
    hsv[..., 0] = (hsv[..., 0] / 6.0) % 1.0
    return hsv

def hsv_to_rgb(hsv):
    # Translated from source of colorsys.hsv_to_rgb
    # h,s should be a numpy arrays with values between 0.0 and 1.0
    # v should be a numpy array with values between 0.0 and 255.0
    # hsv_to_rgb returns an array of uints between 0 and 255.
    rgb = np.empty_like(hsv)
    rgb[..., 3:] = hsv[..., 3:]
    h, s, v = hsv[..., 0], hsv[..., 1], hsv[..., 2]
    i = (h * 6.0).astype('uint8')
    f = (h * 6.0) - i
    p = v * (1.0 - s)
    q = v * (1.0 - s * f)
    t = v * (1.0 - s * (1.0 - f))
    i = i % 6
    conditions = [s == 0.0, i == 1, i == 2, i == 3, i == 4, i == 5]
    rgb[..., 0] = np.select(conditions, [v, q, p, p, t, v], default=v)
    rgb[..., 1] = np.select(conditions, [v, v, v, q, p, p], default=t)
    rgb[..., 2] = np.select(conditions, [v, p, t, v, v, q], default=p)
    return rgb.astype('uint8')


def shift_hue(arr,hout):
    hsv=rgb_to_hsv(arr)
    hsv[...,0]=hout
    rgb=hsv_to_rgb(hsv)
    return rgb

img = Image.open('tweeter.png').convert('RGBA')
arr = np.array(img)

if __name__=='__main__':
    green_hue = (180-78)/360.0
    red_hue = (180-180)/360.0

    new_img = Image.fromarray(shift_hue(arr,red_hue), 'RGBA')
    new_img.save('tweeter_red.png')

    new_img = Image.fromarray(shift_hue(arr,green_hue), 'RGBA')
    new_img.save('tweeter_green.png')

yields

enter image description here

and

enter image description here