While I am trying to use metrics.roc_auc_score, I am getting ValueError: multiclass format is not supported
.
import lightgbm as lgb
from sklearn import metrics
def train_model(train, valid):
dtrain = lgb.Dataset(train, label=y_train)
dvalid = lgb.Dataset(valid, label=y_valid)
param = {'num_leaves': 64, 'objective': 'binary',
'metric': 'auc', 'seed': 7}
print("Training model!")
bst = lgb.train(param, dtrain, num_boost_round=1000, valid_sets=[dvalid],
early_stopping_rounds=10, verbose_eval=False)
valid_pred = bst.predict(valid)
print('Valid_pred: ')
print(valid_pred)
print('y_valid:')
print(y_valid)
valid_score = metrics.roc_auc_score(y_valid, valid_pred)
print(f"Validation AUC score: {valid_score:.4f}")
return bst
bst = train_model(X_train_final, X_valid_final)
valid_pred and y_valid are:
Training model!
Valid_pred:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
y_valid:
Id
530 200624
492 133000
460 110000
280 192000
656 88000
...
327 324000
441 555000
1388 136000
1324 82500
62 101000
Name: SalePrice, Length: 292, dtype: int64
Error:
ValueError Traceback (most recent call last)
<ipython-input-80-df034caf8c9b> in <module>
----> 1 bst = train_model(X_train_final, X_valid_final)
<ipython-input-79-483a6fb5ab9b> in train_model(train, valid)
17 print('y_valid:')
18 print(y_valid)
---> 19 valid_score = metrics.roc_auc_score(y_valid, valid_pred)
20 print(f"Validation AUC score: {valid_score:.4f}")
21 return bst
/opt/conda/lib/python3.6/site-packages/sklearn/metrics/ranking.py in roc_auc_score(y_true, y_score, average, sample_weight, max_fpr)
353 return _average_binary_score(
354 _binary_roc_auc_score, y_true, y_score, average,
--> 355 sample_weight=sample_weight)
356
357
/opt/conda/lib/python3.6/site-packages/sklearn/metrics/base.py in _average_binary_score(binary_metric, y_true, y_score, average, sample_weight)
71 y_type = type_of_target(y_true)
72 if y_type not in ("binary", "multilabel-indicator"):
---> 73 raise ValueError("{0} format is not supported".format(y_type))
74
75 if y_type == "binary":
ValueError: multiclass format is not supported
I tried:
valid_pred = pd.Series(bst.predict(valid)).astype(np.int64)
also I removed 'objective': 'binary'
and tried but no success.
Still not able to figure out what is the issue.
It seems the task you are trying to solve is regression: predicting the price. However, you are training a classification model, that assigns a class to every input.
ROC-AUC score is meant for classification problems where the output is the probability of the input belonging to a class. If you do a multi-class classification, then you can compute the score for each class independently.
Moreover, the predict
method returns a discrete class, not a probability. Let's imagine you do a binary classification and have only one example, it should be classified as False
. If your classifier yields a probability of 0.7, the ROC-AUC value is 1.0-0.7=0.3. If you use the predict
method, the ROC-AUC value will be 1.0-1.0=0.0, which won't tell you much.