Simple prime number generator in Python

marc lincoln picture marc lincoln · Feb 19, 2009 · Viewed 143.3k times · Source

Could someone please tell me what I'm doing wrong with this code? It is just printing 'count' anyway. I just want a very simple prime generator (nothing fancy).

import math

def main():
    count = 3
    one = 1
    while one == 1:
        for x in range(2, int(math.sqrt(count) + 1)):
            if count % x == 0: 
                continue
            if count % x != 0:
                print count

        count += 1

Answer

Eli Bendersky picture Eli Bendersky · Feb 20, 2009

There are some problems:

  • Why do you print out count when it didn't divide by x? It doesn't mean it's prime, it means only that this particular x doesn't divide it
  • continue moves to the next loop iteration - but you really want to stop it using break

Here's your code with a few fixes, it prints out only primes:

import math

def main():
    count = 3
    
    while True:
        isprime = True
        
        for x in range(2, int(math.sqrt(count) + 1)):
            if count % x == 0: 
                isprime = False
                break
        
        if isprime:
            print count
        
        count += 1

For much more efficient prime generation, see the Sieve of Eratosthenes, as others have suggested. Here's a nice, optimized implementation with many comments:

# Sieve of Eratosthenes
# Code by David Eppstein, UC Irvine, 28 Feb 2002
# http://code.activestate.com/recipes/117119/

def gen_primes():
    """ Generate an infinite sequence of prime numbers.
    """
    # Maps composites to primes witnessing their compositeness.
    # This is memory efficient, as the sieve is not "run forward"
    # indefinitely, but only as long as required by the current
    # number being tested.
    #
    D = {}
    
    # The running integer that's checked for primeness
    q = 2
    
    while True:
        if q not in D:
            # q is a new prime.
            # Yield it and mark its first multiple that isn't
            # already marked in previous iterations
            # 
            yield q
            D[q * q] = [q]
        else:
            # q is composite. D[q] is the list of primes that
            # divide it. Since we've reached q, we no longer
            # need it in the map, but we'll mark the next 
            # multiples of its witnesses to prepare for larger
            # numbers
            # 
            for p in D[q]:
                D.setdefault(p + q, []).append(p)
            del D[q]
        
        q += 1

Note that it returns a generator.