TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced

Thedeadman619 picture Thedeadman619 · Oct 5, 2018 · Viewed 74.6k times · Source

I am trying to convert a csv into numpy array. In the numpy array, I am replacing few elements with NaN. Then, I wanted to find the indices of the NaN elements in the numpy array. The code is :

    import pandas as pd
import matplotlib.pyplot as plyt
import numpy as np

filename = 'wether.csv'

df = pd.read_csv(filename,header = None )

list = df.values.tolist()
labels = list[0]
wether_list = list[1:]

year = []
month = []
day = []
max_temp = []

for i in wether_list:
    year.append(i[1])
    month.append(i[2])
    day.append(i[3])
    max_temp.append(i[5])

mid = len(max_temp) // 2
temps = np.array(max_temp[mid:])
temps[np.where(np.array(temps) == -99.9)] = np.nan
plyt.plot(temps,marker = '.',color = 'black',linestyle = 'none')
# plyt.show()

print(np.where(np.isnan(temps))[0])
# print(len(pd.isnull(np.array(temps))))

When I execute this, I am getting a warning and an error. The warning is :

    wether.py:26: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
  temps[np.where(np.array(temps) == -99.9)] = np.nan

The error is :

Traceback (most recent call last):
  File "wether.py", line 30, in <module>
    print(np.where(np.isnan(temps))[0])
TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''

This is a part of the dataset which I am using:

83168,2014,9,7,0.00000,89.00000,78.00000, 83.50000
83168,2014,9,22,1.62000,90.00000,72.00000, 81.00000
83168,2014,9,23,0.50000,87.00000,74.00000, 80.50000
83168,2014,9,24,0.35000,82.00000,73.00000, 77.50000
83168,2014,9,25,0.60000,85.00000,75.00000, 80.00000
83168,2014,9,26,0.76000,89.00000,77.00000, 83.00000
83168,2014,9,27,0.00000,89.00000,79.00000, 84.00000
83168,2014,9,28,0.00000,90.00000,81.00000, 85.50000
83168,2014,9,29,0.00000,90.00000,79.00000, 84.50000
83168,2014,9,30,0.50000,89.00000,75.00000, 82.00000
83168,2014,10,1,0.02000,91.00000,75.00000, 83.00000
83168,2014,10,2,0.03000,93.00000,77.00000, 85.00000
83168,2014,10,3,1.40000,93.00000,75.00000, 84.00000
83168,2014,10,4,0.06000,89.00000,75.00000, 82.00000
83168,2014,10,5,0.22000,91.00000,68.00000, 79.50000
83168,2014,10,6,0.00000,84.00000,68.00000, 76.00000
83168,2014,10,7,0.17000,85.00000,73.00000, 79.00000
83168,2014,10,8,0.06000,84.00000,73.00000, 78.50000
83168,2014,10,9,0.00000,87.00000,73.00000, 80.00000
83168,2014,10,10,0.00000,88.00000,80.00000, 84.00000
83168,2014,10,11,0.00000,87.00000,80.00000, 83.50000
83168,2014,10,12,0.00000,88.00000,80.00000, 84.00000
83168,2014,10,13,0.00000,88.00000,81.00000, 84.50000
83168,2014,10,14,0.04000,88.00000,77.00000, 82.50000
83168,2014,10,15,0.00000,88.00000,77.00000, 82.50000
83168,2014,10,16,0.09000,89.00000,72.00000, 80.50000
83168,2014,10,17,0.00000,85.00000,67.00000, 76.00000
83168,2014,10,18,0.00000,84.00000,65.00000, 74.50000
83168,2014,10,19,0.00000,84.00000,65.00000, 74.50000
83168,2014,10,20,0.00000,85.00000,69.00000, 77.00000
83168,2014,10,21,0.77000,87.00000,76.00000, 81.50000
83168,2014,10,22,0.69000,81.00000,71.00000, 76.00000
83168,2014,10,23,0.31000,82.00000,72.00000, 77.00000
83168,2014,10,24,0.71000,79.00000,73.00000, 76.00000
83168,2014,10,25,0.00000,81.00000,68.00000, 74.50000
83168,2014,10,26,0.00000,82.00000,67.00000, 74.50000
83168,2014,10,27,0.00000,83.00000,64.00000, 73.50000
83168,2014,10,28,0.00000,83.00000,66.00000, 74.50000
83168,2014,10,29,0.03000,86.00000,76.00000, 81.00000
83168,2014,10,30,0.00000,85.00000,69.00000, 77.00000
83168,2014,10,31,0.00000,85.00000,69.00000, 77.00000
83168,2014,11,1,0.00000,86.00000,59.00000, 72.50000
83168,2014,11,2,0.00000,77.00000,52.00000, 64.50000
83168,2014,11,3,0.00000,70.00000,52.00000, 61.00000
83168,2014,11,4,0.00000,77.00000,59.00000, 68.00000
83168,2014,11,5,0.02000,79.00000,73.00000, 76.00000
83168,2014,11,6,0.02000,82.00000,75.00000, 78.50000
83168,2014,11,7,0.00000,83.00000,66.00000, 74.50000
83168,2014,11,8,0.00000,84.00000,65.00000, 74.50000
83168,2014,11,9,0.00000,84.00000,65.00000, 74.50000
83168,2014,11,10,1.20000,72.00000,65.00000, 68.50000
83168,2014,11,11,0.08000,77.00000,61.00000, 69.00000
83168,2014,11,12,0.00000,80.00000,61.00000, 70.50000
83168,2014,11,13,0.00000,83.00000,63.00000, 73.00000
83168,2014,11,14,0.00000,83.00000,65.00000, 74.00000
83168,2014,11,15,0.00000,82.00000,64.00000, 73.00000
83168,2014,11,16,0.00000,83.00000,64.00000, 73.50000
83168,2014,11,17,0.07000,84.00000,64.00000, 74.00000
83168,2014,11,18,0.00000,86.00000,71.00000, 78.50000
83168,2014,11,19,0.57000,78.00000,55.00000, 66.50000
83168,2014,11,20,0.05000,72.00000,56.00000, 64.00000
83168,2014,11,21,0.05000,77.00000,63.00000, 70.00000
83168,2014,11,22,0.22000,77.00000,69.00000, 73.00000
83168,2014,11,23,0.06000,79.00000,76.00000, 77.50000
83168,2014,11,24,0.02000,84.00000,78.00000, 81.00000
83168,2014,11,25,0.00000,86.00000,78.00000, 82.00000
83168,2014,11,26,0.07000,85.00000,77.00000, 81.00000
83168,2014,11,27,0.21000,82.00000,55.00000, 68.50000
83168,2014,11,28,0.00000,73.00000,53.00000, 63.00000
83168,2015,1,8,0.00000,80.00000,57.00000,
83168,2015,1,9,0.05000,72.00000,56.00000,
83168,2015,1,10,0.00000,72.00000,57.00000,
83168,2015,1,11,0.00000,80.00000,57.00000,
83168,2015,1,12,0.05000,80.00000,59.00000,
83168,2015,1,13,0.85000,81.00000,69.00000,
83168,2015,1,14,0.05000,81.00000,68.00000,
83168,2015,1,15,0.00000,81.00000,64.00000,
83168,2015,1,16,0.00000,78.00000,63.00000,
83168,2015,1,17,0.00000,73.00000,55.00000,
83168,2015,1,18,0.00000,76.00000,55.00000,
83168,2015,1,19,0.00000,78.00000,55.00000,
83168,2015,1,20,0.00000,75.00000,56.00000,
83168,2015,1,21,0.02000,73.00000,65.00000,
83168,2015,1,22,0.00000,80.00000,64.00000,
83168,2015,1,23,0.00000,80.00000,71.00000,
83168,2015,1,24,0.00000,79.00000,72.00000,
83168,2015,1,25,0.00000,79.00000,49.00000,
83168,2015,1,26,0.00000,79.00000,49.00000,
83168,2015,1,27,0.10000,75.00000,53.00000,
83168,2015,1,28,0.00000,68.00000,53.00000,
83168,2015,1,29,0.00000,69.00000,53.00000,
83168,2015,1,30,0.00000,72.00000,60.00000,
83168,2015,1,31,0.00000,76.00000,58.00000,
83168,2015,2,1,0.00000,76.00000,58.00000,
83168,2015,2,2,0.05000,77.00000,58.00000,
83168,2015,2,3,0.00000,84.00000,56.00000,
83168,2015,2,4,0.00000,76.00000,56.00000,

I am unable to rectify the error. How to overcome the warning in the 26th line? How to solve the error? Please help! Thanks in Advance!

Update : when I try the same thing in different way like reading dataset from file instead of converting to dataframes, I am not getting the error. What would be the reason for that? The code is :

    weather_filename = 'wether.csv'
weather_file = open(weather_filename)
weather_data = weather_file.read()
weather_file.close()

# Break the weather records into lines
lines = weather_data.split('\n')
labels = lines[0]
values = lines[1:]
n_values = len(values)

# Break the list of comma-separated value strings
# into lists of values.
year = []
month = []
day = []
max_temp = []
j_year = 1
j_month = 2
j_day = 3
j_max_temp = 5

for i_row in range(n_values):
    split_values = values[i_row].split(',')
    if len(split_values) >= j_max_temp:
        year.append(int(split_values[j_year]))
        month.append(int(split_values[j_month]))
        day.append(int(split_values[j_day]))
        max_temp.append(float(split_values[j_max_temp]))

# Isolate the recent data.
i_mid = len(max_temp) // 2
temps = np.array(max_temp[i_mid:])
year = year[i_mid:]
month = month[i_mid:]
day = day[i_mid:]
temps[np.where(temps == -99.9)] = np.nan

# Remove all the nans.
# Trim both ends and fill nans in the middle.
# Find the first non-nan.
i_start = np.where(np.logical_not(np.isnan(temps)))[0][0]
temps = temps[i_start:]
year = year[i_start:]
month = month[i_start:]
day = day[i_start:]
i_nans = np.where(np.isnan(temps))[0]
print(i_nans)

What is wrong in the first code and why the second doesn't even give a warning? Please help!

Answer

hpaulj picture hpaulj · Oct 5, 2018

What's the dtype of temps. I can reproduce your warning and error with a string dtype:

In [26]: temps = np.array([1,2,'string',0])
In [27]: temps
Out[27]: array(['1', '2', 'string', '0'], dtype='<U21')
In [28]: temps==-99.9
/usr/local/bin/ipython3:1: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
  #!/usr/bin/python3
Out[28]: False
In [29]: np.isnan(temps)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-29-2ff7754ed926> in <module>()
----> 1 np.isnan(temps)

TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''

First, comparing strings with the number gives this future warning.

Second, testing for nan produces the error.

Note that given the dtype, the nan assignment assigns a string value, not a float (np.nan is a float).

In [30]: temps[-1] = np.nan
In [31]: temps
Out[31]: array(['1', '2', 'string', 'nan'], dtype='<U21')